Features
• Programmable Audio Output for Interfacing with Common Audio DAC
– PCM Format Compatible
– I2S Format Compatible
• 8-bit MCU C51 Core-based (FMAX = 20 MHz)
• 2304 Bytes of Internal RAM
• 64K Bytes of Code Memory
– AT89C5132: Flash (100K Write/Erase Cycles)
• 4K Bytes of Boot Flash Memory (AT89C5132)
– ISP: Download from USB (standard) or UART (option)
• USB Rev 1.1 Device Controller
USB
– “Full Speed” Data Transmission
• Built-in PLL
Microcontroller
with 64K Bytes
Flash Memory
• MultiMedia Card® Interface Compatibility
• Atmel DataFlash® SPI Interface Compatibility
• IDE/ATAPI Interface
• 2 Channels 10-bit ADC, 8 kHz (8 True Bits)
– Battery Voltage Monitoring
– Voice Recording Controlled by Software
• Up to 44 Bits of General-purpose I/Os
– 4-bit Interrupt Keyboard Port for a 4 x n Matrix
– SmartMedia® Software Interface
• Two Standard 16-bit Timers/Counters
• Hardware Watchdog Timer
AT89C5132
• Standard Full Duplex UART with Baud Rate Generator
• Two Wire Master and Slave Modes Controller
• SPI Master and Slave Modes Controller
• Power Management
– Power-on Reset
– Software Programmable MCU Clock
– Idle Mode, Power-down Mode
• Operating Conditions
– 3V, 10%, 25 mA Typical Operating at 25°C
– Temperature Range: -40°C to +85°C
• Packages
– TQFP80, PLCC84 (Development Board Only)
– Dice
1. Description
The AT89C5132 is a mass storage device controlling data exchange between various
Flash modules, HDD and CD-ROM.
The AT89C5132 includes 64K Bytes of Flash memory and allows In-System Program-
ming through an embedded 4K Bytes of Boot Flash Memory.
The AT89C5132 include 2304 Bytes of RAM memory.
The AT89C5132 provides all the necessary features for man-machine interface
including, timers, keyboard port, serial or parallel interface (USB, SPI, IDE), ADC
input, I2S output, and all external memory interface (NAND or NOR Flash, SmartMe-
dia, MultiMedia, DataFlash cards).
2. Typical Applications
•
•
•
Flash Recorder/Writer
PDA, Camera, Mobile Phone
PC Add-on
4173ES–USB–09/07
AT89C5132
4. Pin Description
Figure 4-1. AT89C5132 80-pin TQFP Package
ALE
ISP
1
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
P4.5
2
P4.4
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P1.3/KIN3
P1.4
3
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
VSS
4
5
6
7
P1.5
8
P1.6/SCL
P1.7/SDA
VDD
9
10
11
12
13
14
15
16
17
18
19
20
VDD
TQFP80
MCLK
MDAT
MCMD
RST
PVDD
FILT
PVSS
VSS
SCLK
X2
DSEL
X1
DCLK
DOUT
VSS
TST
UVDD
UVSS
VDD
3
4173ES–USB–09/07
Figure 4-2. AT89C5132 84-pin PLCC (1)
ALE 12
ISP 13
74 NC
73 P4.5
P1.0/KIN0 14
P1.1/KIN1 15
P1.2/KIN2 16
P1.3/KIN3 17
P1.4 18
72 P4.4
71 P2.2/A10
70 P2.3/A11
69 P2.4/A12
68 P2.5/A13
67 P2.6/A14
66 P2.7/A15
65 VSS
P1.5 19
P1.6/SCL 20
P1.7/SDA 21
VDD 22
PLCC84
64 VDD
PAVDD 23
FILT 24
63 MCLK
62 MDAT
61 MCMD
60 RST
PAVSS 25
VSS 26
X2 27
59 SCLK
58 DSEL
57 DCLK
56 DOUT
55 VSS
NC 28
X1 29
TST 30
UVDD 31
UVSS 32
54 VDD
Note:
1. For development board only.
4.1
Signals
All the AT89C5132 signals are detailed by functionality in Table 1 to Table 14.
Table 1. Ports Signal Description
Signal
Alternate
Name
Type
Description
Function
Port 0
P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written
to them float and can be used as high impedance inputs. To avoid any parasitic
P0.7:0
I/O
AD7:0
current consumption, floating P0 inputs must be polarized to VDD or VSS
.
KIN3:0
SCL
SDA
Port 1
P1.7:0
I/O
P1 is an 8-bit bidirectional I/O port with internal pull-ups.
4
AT89C5132
4173ES–USB–09/07
AT89C5132
Signal
Name
Alternate
Function
Type
Description
Port 2
P2.7:0
I/O
A15:8
P2 is an 8-bit bidirectional I/O port with internal pull-ups.
RXD
TXD
INT0
INT1
T0
Port 3
P3.7:0
I/O
P3 is an 8-bit bidirectional I/O port with internal pull-ups.
T1
WR
RD
MISO
MOSI
SCK
SS
Port 4
P4.7:0
P5.3:0
I/O
I/O
P4 is an 8-bit bidirectional I/O port with internal pull-ups.
Port 5
-
P5 is a 4-bit bidirectional I/O port with internal pull-ups.
Table 2. Clock Signal Description
Signal
Name
Alternate
Function
Type
Description
Input to the on-chip inverting oscillator amplifier
To use the internal oscillator, a crystal/resonator circuit is connected to this pin.
If an external oscillator is used, its output is connected to this pin. X1 is the
clock source for internal timing.
X1
I
-
Output of the on-chip inverting oscillator amplifier
X2
O
I
To use the internal oscillator, a crystal/resonator circuit is connected to this pin.
If an external oscillator is used, leave X2 unconnected.
-
-
PLL Low Pass Filter input
FILT receives the RC network of the PLL low pass filter.
FILT
Table 3. Timer 0 and Timer 1 Signal Description
Signal
Name
Alternate
Function
Type
Description
Timer 0 Gate Input
INT0 serves as external run control for timer 0, when selected by GATE0 bit in
TCON register.
INT0
I
P3.2
External Interrupt 0
INT0 input sets IE0 in the TCON register. If bit IT0 in this register is set, bit IE0
is set by a falling edge on INT0. If bit IT0 is cleared, bit IE0 is set by a low level
on INT0.
Timer 1 Gate Input
INT1 serves as external run control for timer 1, when selected by GATE1 bit in
TCON register.
INT1
I
P3.3
External Interrupt 1
INT1 input sets IE1 in the TCON register. If bit IT1 in this register is set, bit IE1
is set by a falling edge on INT1. If bit IT1 is cleared, bit IE1 is set by a low level
on INT1.
5
4173ES–USB–09/07
Signal
Name
Alternate
Function
Type
Description
Timer 0 External Clock Input
T0
T1
I
When timer 0 operates as a counter, a falling edge on the T0 pin increments
the count.
P3.4
P3.5
Timer 1 External Clock Input
When timer 1 operates as a counter, a falling edge on the T1 pin increments
the count.
I
Table 4. Audio Interface Signal Description
Signal
Alternate
Function
Name
DCLK
DOUT
Type
O
Description
DAC Data Bit Clock
DAC Audio Data
-
-
O
DAC Channel Select Signal
DSEL is the sample rate clock output.
DSEL
SCLK
O
O
-
-
DAC System Clock
SCLK is the oversampling clock synchronized to the digital audio data (DOUT)
and the channel selection signal (DSEL).
Table 5. USB Controller Signal Description
Signal
Name
Alternate
Function
Type
I/O
Description
USB Positive Data Upstream Port
This pin requires an external 1.5 KΩ pull-up to VDD for full speed operation.
D+
-
-
D-
I/O
USB Negative Data Upstream Port
Table 6. MutiMediaCard Interface Signal Description
Signal
Name
Alternate
Function
Type
Description
MMC Clock output
Data or command clock transfer.
MCLK
O
-
MMC Command line
Bidirectional command channel used for card initialization and data transfer
commands. To avoid any parasitic current consumption, unused MCMD input
MCMD
MDAT
I/O
I/O
-
must be polarized to VDD or VSS
.
MMC Data line
Bidirectional data channel. To avoid any parasitic current consumption, unused
MDAT input must be polarized to VDD or VSS
-
.
6
AT89C5132
4173ES–USB–09/07
AT89C5132
Table 7. UART Signal Description
Signal
Name
Alternate
Function
Type
Description
Receive Serial Data
RXD
I/O
RXD sends and receives data in serial I/O mode 0 and receives data in serial
I/O modes 1, 2 and 3.
P3.0
P3.1
Transmit Serial Data
TXD outputs the shift clock in serial I/O mode 0 and transmits data in serial I/O
modes 1, 2 and 3.
TXD
O
Table 8. SPI Controller Signal Description
Signal
Name
Alternate
Function
Type
Description
SPI Master Input Slave Output Data Line
MISO
I/O
When in master mode, MISO receives data from the slave peripheral. When in
slave mode, MISO outputs data to the master controller.
P4.0
P4.1
SPI Master Output Slave Input Data Line
When in master mode, MOSI outputs data to the slave peripheral. When in
slave mode, MOSI receives data from the master controller.
MOSI
I/O
SPI Clock Line
SCK
SS
I/O
I
When in master mode, SCK outputs clock to the slave peripheral. When in
slave mode, SCK receives clock from the master controller.
P4.2
P4.3
SPI Slave Select Line
When in controlled slave mode, SS enables the slave mode.
Table 9. TWI Controller Signal Description
Signal
Name
Alternate
Function
Type
Description
TWI Serial Clock
When TWI controller is in master mode, SCL outputs the serial clock to the
slave peripherals. When TWI controller is in slave mode, SCL receives clock
from the master controller.
SCL
I/O
P1.6
P1.7
TWI Serial Data
SDA is the bidirectional Two Wire data line.
SDA
I/O
Table 10. A/D Converter Signal Description
Signal
Alternate
Function
Name
AIN1:0
AREFP
Type
Description
I
I
A/D Converter Analog Inputs
Analog Positive Voltage Reference Input
-
-
Analog Negative Voltage Reference Input
This pin is internally connected to AVSS.
AREFN
I
-
7
4173ES–USB–09/07
Table 11. Keypad Interface Signal Description
Signal
Name
Alternate
Function
Type
Description
Keypad Input Lines
KIN3:0
I
Holding one of these pins high or low for 24 oscillator periods triggers a
keypad interrupt.
P1.3:0
Table 12. External Access Signal Description
Signal
Name
Alternate
Function
Type
Description
Address Lines
A15:8
I/O
Upper address lines for the external bus.
Multiplexed higher address and data lines for the IDE interface.
P2.7:0
P0.7:0
Address/Data Lines
Multiplexed lower address and data lines for the external memory or the IDE
interface.
AD7:0
ALE
I/O
O
Address Latch Enable Output
ALE signals the start of an external bus cycle and indicates that valid address
information is available on lines A7:0. An external latch is used to demultiplex
the address from address/data bus.
-
-
ISP Enable Input
ISP
I/O
This signal must be held to GND through a pull-down resistor at the falling
reset to force execution of the internal bootloader.
Read Signal
RD
O
O
P3.7
P3.6
Read signal asserted during external data memory read operation.
Write Signal
WR
Write signal asserted during external data memory write operation.
Table 13. System Signal Description
Signal
Name
Alternate
Function
Type
Description
Reset Input
Holding this pin high for 64 oscillator periods while the oscillator is running
resets the device. The Port pins are driven to their reset conditions when a
voltage lower than VIL is applied, whether or not the oscillator is running.
This pin has an internal pull-down resistor which allows the device to be reset
RST
I
-
by connecting a capacitor between this pin and VDD
.
Asserting RST when the chip is in Idle mode or Power-Down mode returns the
chip to normal operation.
Test Input
TST
I
-
Test mode entry signal. This pin must be set to VDD
.
8
AT89C5132
4173ES–USB–09/07
AT89C5132
Table 14. Power Signal Description
Signal
Name
Alternate
Function
Type
Description
Digital Supply Voltage
Connect these pins to +3V supply voltage.
VDD
PWR
-
-
-
-
-
-
-
-
Circuit Ground
Connect these pins to ground.
VSS
GND
PWR
GND
PWR
GND
PWR
GND
Analog Supply Voltage
Connect this pin to +3V supply voltage.
AVDD
AVSS
PVDD
PVSS
UVDD
UVSS
Analog Ground
Connect this pin to ground.
PLL Supply voltage
Connect this pin to +3V supply voltage.
PLL Circuit Ground
Connect this pin to ground.
USB Supply Voltage
Connect this pin to +3V supply voltage.
USB Ground
Connect this pin to ground.
9
4173ES–USB–09/07
4.2
Internal Pin Structure
Table 15. Detailed Internal Pin Structure
Circuit(1)
Type
Pins
VDD
Input
TST
VDD
Watchdog Output
P
Input/Output
RST
VSS
VDD
VDD
VDD
2 osc
periods
P1(2)
P2(3)
P3
Latch Output
P1
P2
P3
Input/Output
P4
N
P53:0
VSS
VDD
P0
P
MCMD
MDAT
Input/Output
ISP
N
PSEN
VSS
VDD
ALE
SCLK
DCLK
P
Output
DOUT
DSEL
MCLK
N
VSS
D+
D-
Input/Output
D+
D-
Notes: 1. For information on resistors value, input/output levels, and drive capability, refer to the
Section “DC Characteristics”, page 183.
2. When the Two Wire controller is enabled, P1, P2, and P3 transistors are disabled allowing
pseudo open-drain structure.
3. In Port 2, P1 transistor is continuously driven when outputting a high level bit address (A15:8).
10
AT89C5132
4173ES–USB–09/07
AT89C5132
5. Address Spaces
The AT8xC5132 derivatives implement four different address spaces:
•
•
•
•
Program/Code Memory
Boot Memory
Data Memory
Special Function Registers (SFRs)
5.0.1
Code Memory
The AT89C5132 implements 64K Bytes of on-chip program/code memory in Flash technology.
The Flash memory increases ROM functionality by enabling in-circuit electrical erasure and pro-
gramming. Thanks to the internal charge pump, the high voltage needed for programming or
erasing Flash cells is generated on-chip using the standard VDD voltage. Thus, the AT89C5132
can be programmed using only one voltage and allows in application software programming
commonly known as IAP. Hardware programming mode is also available using specific pro-
gramming tools.
5.0.2
5.0.3
Boot Memory
Data Memory
The AT89C5132 implements 4K Bytes of on-chip boot memory provided in Flash technology.
This boot memory is delivered programmed with a standard bootloader software allowing in sys-
tem programming commonly known as ISP. It also contains some Application Programming
Interfaces routines commonly known as API allowing user to develop his own bootloader.
The AT89C5132 derivatives implement 2304 bytes of on-chip data RAM. This memory is divided
in two separate areas:
•
•
256 bytes of on-chip RAM memory (standard C51 memory).
2048 bytes of on-chip expanded RAM memory (ERAM accessible via MOVX instructions).
11
4173ES–USB–09/07
Peripherals
The AT8xC5132 peripherals are briefly described in the following sections. For further
details on how to interface (hardware and software) to these peripherals, please refer to
the AT8xC5132 complete datasheet.
Clock Generator System The AT8xC5132 internal clocks are extracted from an on-chip PLL fed by an on-chip
oscillator. Four clocks are generated respectively for the C51 core, the audio interface,
and the other peripherals. The C51 and peripheral clocks are derived from the oscillator
clock. The audio interface sample rates are also obtained by dividing the PLL output
clock.
Ports
The AT8xC5132 implement five 8-bit ports (P0 to P4) and one 4-bit port (P5). In addition
to performing general-purpose I/Os, some ports are capable of external data memory
operations; others allow for alternate functions. All I/O Ports are bidirectional. Each Port
contains a latch, an output driver and an input buffer. Port 0 and Port 2 output drivers
and input buffers facilitate external memory operations. Some Port 1, Port 3 and Port 4
pins serve for both general-purpose I/Os and alternate functions.
Timers/Counters
The AT8xC5132 implement the two general-purpose, 16-bit Timers/Counters of a stan-
dard C51. They are identified as Timer 0, Timer 1, and can independently be configured
each to operate in a variety of modes as a Timer or as an event Counter. When operat-
ing as a Timer, a Timer/Counter runs for a programmed length of time, then issues an
interrupt request. When operating as a Counter, a Timer/Counter counts negative transi-
tions on an external pin. After a preset number of counts, the Counter issues an interrupt
request.
Watchdog Timer
The AT8xC5132 implement a hardware Watchdog Timer that automatically resets the
chip if it is allowed to time out. The WDT provides a means of recovering from routines
that do not complete successfully due to software or hardware malfunctions.
Audio Output Interface
The AT8xC5132 implements an audio output interface allowing the decoded audio bit-
stream to be output in various formats. They are compatible with right and left
justification PCM and I2S formats and the on-chip PLL allows connection of almost all
commercial audio DAC families available on the market.
Universal Serial Bus
Interface
The AT8xC5132 implements a full-speed Universal Serial Bus Interface. The USB inter-
face can be used for the following purposes:
•
•
Download of files by supporting the USB mass storage class.
In-System Programming by supporting the USB firmware upgrade class.
MultiMedia Card
Interface
The AT8xC5132 implements a MultiMedia Card (MMC) interface compliant to the V2.2
specification in MultiMedia Card mode. The MMC allows storage of files in removable
Flash memory cards that can be easily plugged or removed from the application. It can
also be used for In-System Programming.
IDE/ATAPI Interface
The AT8xC5132 provide an IDE/ATAPI interface allowing connection of devices such as
CD-ROM reader, CompactFlash™ cards, Hard Disk Drive, etc. It consists of a 16-bit bidi-
rectional bus part of the low-level ANSI ATA/ATAPI specification. It is provided for mass
storage interface but could be used for In-System Programming using CD-ROM.
12
AT89C5132
4173ES–USB–09/07
AT89C5132
Serial I/O Interface
The AT89C5132 implements a serial port with its own baud rate generator providing one
single synchronous communication mode and three full-duplex Universal Asynchronous
Receiver Transmitter (UART) communication modes. It is provided for the following
purposes:
•
•
In System Programming.
Remote control of the AT89C5132 by a host.
Serial Peripheral
Interface
The AT89C5132 implements a Serial Peripheral Interface (SPI) supporting master and
slave modes. It is provided for the following purposes:
•
•
Remote control of the AT89C5132 by a host.
In System Programming.
Two-wire Controller
A/D Controller
The AT89C5132 implements a 2-wire controller supporting the four standard master and
slave modes with multimaster capability. It is provided for the following purposes:
•
•
•
Connection of slave devices like LCD controller, audio DAC…
Remote control of the AT89C5132 by a host.
In System Programming.
The AT89C5132 implements a 2-channel 10-bit (8 true bits) analog to digital converter
(ADC). It is provided for the following purposes:
•
•
•
Battery monitoring.
Voice recording.
Corded remote control.
13
4173ES–USB–09/07
6. Electrical Characteristics
6.1
Absolute Maximum Ratings
*NOTICE:
Stressing the device beyond the “Absolute Maxi-
mum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond
the “operating conditions” is not recommended
and extended exposure beyond the “Operating
Conditions” may affect device reliability.
Storage Temperature..................................... -65°C to +150°C
Voltage on any other Pin to VSS .....................................-0.3to+4.0V
IOL per I/O Pin ................................................................. 5 mA
Power Dissipation............................................................. 1 W
Ambient Temperature Under Bias.................... -40°C to +85°C
VDD ....................................................................................... 2.7V to 3.3V
6.2
DC Characteristics
6.2.1
Digital Logic
Table 1. Digital DC Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
Parameter
Min
-0.5
Typ(1)
Max
0.2·VDD - 0.1
VDD
Units
Test Conditions
VIL
Input Low Voltage
V
V
V
VIH1
Input High Voltage (except RST, X1)
Input High Voltage (RST, X1)
0.2·VDD + 1.1
(2)
VIH2
0.7·VDD
VDD + 0.5
Output Low Voltage
VOL1
(except P0, ALE, MCMD, MDAT, MCLK,
SCLK, DCLK, DSEL, DOUT)
0.45
0.45
V
IOL= 1.6 mA
Output Low Voltage
(P0, ALE, MCMD, MDAT, MCLK, SCLK,
DCLK, DSEL, DOUT)
VOL2
V
V
IOL= 3.2 mA
Output High Voltage
(P1, P2, P3, P4 and P5)
VOH1
VDD - 0.7
VDD - 0.7
IOH= -30 μA
Output High Voltage
(P0, P2 address mode, ALE, MCMD,
MDAT, MCLK, SCLK, DCLK, DSEL,
DOUT, D+, D-)
VOH2
V
IOH= -3.2 mA
Vin = 0.45 V
Logical 0 Input Current (P1, P2, P3, P4
and P5)
IIL
-50
μA
14
AT89C5132
4173ES–USB–09/07
AT89C5132
Table 1. Digital DC Characteristics
DD = 2.7 to 3.3V , TA = -40 to +85°C
V
Symbol
Parameter
Min
Typ(1)
Max
Units
Test Conditions
Input Leakage Current (P0, ALE, MCMD,
MDAT, MCLK, SCLK, DCLK, DSEL,
DOUT)
ILI
10
μA
0.45< VIN< VDD
Logical 1 to 0 Transition Current
(P1, P2, P3, P4 and P5)
ITL
-650
200
μA
Vin = 2.0 V
RRST
CIO
Pull-Down Resistor
Pin Capacitance
50
90
10
kΩ
pF
V
TA= 25°C
VRET
VDD Data Retention Limit
1.8
VDD < 3.3 V
X1 / X2 mode
6.5 / 10.5
8 / 13.5
12 MHz
16 MHz
20 MHz
(3)
IDD
Operating Current
mA
9.5 / 17
VDD < 3.3 V
X1 / X2 mode
5.3 / 8.1
6.4 / 10.3
7.5 / 13
12 MHz
16 MHz
20 MHz
(3)
IDL
Idle Mode Current
mA
IPD
Power-Down Mode Current
20
500
μA
VRET < VDD < 3.3 V
Notes: 1. Typical values are obtained using VDD= 3 V and TA= 25°C. They are not tested and there is no
guarantee on these values.
2. Flash retention is guaranteed with the same formula for VDD min down to 0V.
3. See Table 154 for typical consumption in player mode.
6.2.2
IDD, IDL and IPD Test Conditions
Figure 6-1.
I
DD Test Condition, Active Mode
VDD
VDD
RST
VDD
PVDD
UVDD
AVDD
IDD
(NC)
Clock Signal
X2
X1
VDD
P0
VSS
PVSS
UVSS
AVSS
TST
VSS
All other pins are unconnected
15
4173ES–USB–09/07
Figure 6-2. IDL Test Condition, Idle Mode
VDD
VDD
PVDD
UVDD
AVDD
IDL
RST
VSS
(NC)
Clock Signal
X2
X1
VDD
P0
VSS
PVSS
UVSS
AVSS
TST
VSS
All other pins are unconnected
Figure 6-3. IPD Test Condition, Power-Down Mode
VDD
VDD
PVDD
UVDD
AVDD
IPD
RST
VSS
(NC)
VDD
X2
X1
P0
MCMD
MDAT
TST
VSS
PVSS
UVSS
AVSS
VSS
All other pins are unconnected
6.2.3
A-to-D Converter
Table 2. A-to-D Converter DC Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
Parameter
Min
Typ
Max
Units Test Conditions
AVDD
Analog Supply Voltage
2.7
3.3
V
AVDD = 3.3V
μA
AIDD
Analog Operating Supply Current
600
AIN1:0 = 0 to AVDD
AVDD = 3.3V
μA
AIPD
AVIN
Analog Standby Current
Analog Input Voltage
2
ADEN = 0 or PD = 1
AVSS
AVDD
V
Reference Voltage
AREFN
AREFP
AVREF
AVSS
2.4
V
V
AVDD
30
RREF
CIA
AREF Input Resistance
Analog Input capacitance
10
kΩ
TA = 25°C
TA = 25°C
10
pF
16
AT89C5132
4173ES–USB–09/07
AT89C5132
6.2.4
Oscillator and Crystal
6.2.4.1
Schematic
Figure 6-4. Crystal Connection
X1
X2
C1
C2
Q
VSS
Note:
For operation with most standard crystals, no external components are needed on X1 and X2. It
may be necessary to add external capacitors on X1 and X2 to ground in special cases (max 10
pF). X1 and X2 may not be used to drive other circuits.
6.2.4.2
Parameters
Table 3. Oscillator and Crystal Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
CX1
CX2
CL
Parameter
Min
Typ
10
10
5
Max
Unit
pF
Internal Capacitance (X1 - VSS)
Internal Capacitance (X2 - VSS)
Equivalent Load Capacitance (X1 - X2)
Drive Level
pF
pF
DL
50
20
40
6
μW
MHz
Ω
F
Crystal Frequency
RS
Crystal Series Resistance
Crystal Shunt Capacitance
CS
pF
6.2.5
Phase Lock Loop
6.2.5.1
Schematic
Figure 6-5. PLL Filter Connection
FILT
R
C2
C1
VSS
VSS
17
4173ES–USB–09/07
6.2.5.2
Parameters
Table 4. PLL Filter Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
Parameter
Min
Typ
100
10
Max
Unit
Ω
R
Filter Resistor
C1
C2
Filter Capacitance 1
Filter Capacitance 2
nF
nF
2.2
6.2.6
USB Connection
6.2.6.1
Schematic
Figure 6-6. USB Connection
VDD
To Power
Supply
RFS
VBUS
D+
D-
D+
D-
RUSB
RUSB
GND
VSS
6.2.6.2
Parameters
Table 16. USB Characteristics
VDD = 3 to 3.3 V, TA = -40 to +85°C
Symbol
RUSB
Parameter
Min
Typ
27
Max
Unit
Ω
USB Termination Resistor
USB Full Speed Resistor
RFS
1.5
KΩ
6.2.7
In-system Programming
6.2.7.1
Schematic
Figure 6-7. ISP Pull-down Connection
ISP
RISP
VSS
6.2.7.2
Parameters
Table 5. ISP Pull-Down Characteristics
VDD = 3 to 3.3V , TA = -40 to +85°C
Symbol
Parameter
Min
Typ
Max
Unit
RISP
ISP Pull-Down Resistor
2.2
kΩ
18
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3
AC Characteristics
External 8-bit Bus Cycles
Definition of Symbols
6.3.1
6.3.1.1
Table 6. External 8-bit Bus Cycles Timing Symbol Definitions
Signals
Address
Conditions
High
A
D
L
H
L
Data In
ALE
Low
V
X
Z
Valid
Q
R
W
Data Out
RD
No Longer Valid
Floating
WR
6.3.1.2
Timings
Test conditions: capacitive load on all pins = 50 pF.
Table 7. External 8-bit Bus Cycle – Data Read AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Variable Clock
X2 Mode
Symbol Parameter
Min
Max
Min
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
TCLCL
TLHLL
TAVLL
TLLAX
TLLRL
TRLRH
TRHLH
TAVDV
TAVRL
TRLDV
TRLAZ
TRHDX
TRHDZ
Clock Period
50
50
ALE Pulse Width
2·TCLCL-15
TCLCL-20
TCLCL-20
3·TCLCL-30
6·TCLCL-25
TCLCL-20
TCLCL-15
Address Valid to ALE Low
Address hold after ALE Low
ALE Low to RD Low
0.5·TCLCL-20
0.5·TCLCL-20
1.5·TCLCL-30
3·TCLCL-25
RD Pulse Width
RD high to ALE High
Address Valid to Valid Data In
Address Valid to RD Low
RD Low to Valid Data
RD Low to Address Float
Data Hold After RD High
Instruction Float After RD High
TCLCL+20
0.5·TCLCL-20
0.5·TCLCL+20
4.5·TCLCL-65
9·TCLCL-65
4·TCLCL-30
2·TCLCL-30
5·TCLCL-30
0
2.5·TCLCL-30
0
0
0
2·TCLCL-25
TCLCL-25
19
4173ES–USB–09/07
Table 8. External 8-bit Bus Cycle – Data Write AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Variable Clock
X2 Mode
Symbol Parameter
Min
Max
Min
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
TCLCL
TLHLL
Clock Period
50
50
ALE Pulse Width
2·TCLCL-15
TCLCL-20
TCLCL-20
3·TCLCL-30
6·TCLCL-25
TCLCL-20
4·TCLCL-30
7·TCLCL-20
TCLCL-15
TCLCL-15
TAVLL
Address Valid to ALE Low
Address hold after ALE Low
ALE Low to WR Low
WR Pulse Width
0.5·TCLCL-20
0.5·TCLCL-20
1.5·TCLCL-30
3·TCLCL-25
0.5·TCLCL-20
2·TCLCL-30
3.5·TCLCL-20
0.5·TCLCL-15
TLLAX
TLLWL
TWLWH
TWHLH
TAVWL
TQVWH
TWHQX
WR High to ALE High
Address Valid to WR Low
Data Valid to WR High
Data Hold after WR High
TCLCL+20
0.5·TCLCL+20
6.3.1.3
Waveforms
Figure 6-8. External 8-bit Bus Cycle – Data Read Waveforms
ALE
TLHLL
TLLRL
TRLRH
TRHLH
RD
TRLDV
TRHDZ
TRHDX
TRLAZ
TLLAX
TAVLL
P0
P2
A7:0
TAVRL
TAVDV
D7:0
Data In
A15:8
20
AT89C5132
4173ES–USB–09/07
AT89C5132
Figure 6-9. External 8-bit Bus Cycle – Data Write Waveforms
ALE
TLHLL
TWHLH
TLLWL
TWLWH
WR
TAVWL
TLLAX
TAVLL
TQVWH
TWHQX
P0
P2
A7:0
D7:0
Data Out
A15:8
6.3.2
External IDE 16-bit Bus Cycles
6.3.2.1
Definition of Symbols
Table 9. External IDE 16-bit Bus Cycles Timing Symbol Definitions
Signals
Conditions
High
A
D
L
Address
Data In
ALE
H
L
Low
V
X
Z
Valid
Q
R
W
Data Out
RD
No Longer Valid
Floating
WR
6.3.2.2
Timings
Test conditions: capacitive load on all pins = 50 pF.
21
4173ES–USB–09/07
Table 10. External IDE 16-bit Bus Cycle – Data Read AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Variable Clock
X2 Mode
Symbol Parameter
Min
Max
Min
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
TCLCL
TLHLL
TAVLL
TLLAX
TLLRL
TRLRH
TRHLH
TAVDV
TAVRL
TRLDV
TRLAZ
TRHDX
TRHDZ
Clock Period
50
50
ALE Pulse Width
2·TCLCL-15
TCLCL-20
TCLCL-20
3·TCLCL-30
6·TCLCL-25
TCLCL-20
TCLCL-15
Address Valid to ALE Low
Address hold after ALE Low
ALE Low to RD Low
0.5·TCLCL-20
0.5·TCLCL-20
1.5·TCLCL-30
3·TCLCL-25
0.5·TCLCL-20
RD Pulse Width
RD high to ALE High
Address Valid to Valid Data In
Address Valid to RD Low
RD Low to Valid Data
RD Low to Address Float
Data Hold After RD High
Instruction Float After RD High
TCLCL+20
0.5·TCLCL+20
4.5·TCLCL-65
9·TCLCL-65
4·TCLCL-30
2·TCLCL-30
5·TCLCL-30
0
2.5·TCLCL-30
0
0
0
2·TCLCL-25
TCLCL-25
Table 11. External IDE 16-bit Bus Cycle – Data Write AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Variable Clock
X2 Mode
Symbol Parameter
Min
Max
Min
50
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
TCLCL
TLHLL
Clock Period
50
ALE Pulse Width
2·TCLCL-15
TCLCL-20
TCLCL-20
3·TCLCL-30
6·TCLCL-25
TCLCL-20
4·TCLCL-30
7·TCLCL-20
TCLCL-15
TCLCL-15
TAVLL
Address Valid to ALE Low
Address hold after ALE Low
ALE Low to WR Low
WR Pulse Width
0.5·TCLCL-20
0.5·TCLCL-20
1.5·TCLCL-30
3·TCLCL-25
TLLAX
TLLWL
TWLWH
TWHLH
TAVWL
TQVWH
TWHQX
WR High to ALE High
Address Valid to WR Low
Data Valid to WR High
Data Hold after WR High
TCLCL+20
0.5·TCLCL-20
2·TCLCL-30
0.5·TCLCL+20
3.5·TCLCL-20
0.5·TCLCL-15
22
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.2.3
Waveforms
Figure 6-10. External IDE 16-bit Bus Cycle – Data Read Waveforms
ALE
TLHLL
TLLRL
TRLRH
TRHLH
RD
TRLDV
TRHDZ
TRHDX
TRLAZ
TLLAX
TAVLL
P0
P2
A7:0
TAVRL
TAVDV
D7:0
Data In
A15:8
D15:81
Data In
Note:
D15:8 is written in DAT16H SFR.
Figure 6-11. External IDE 16-bit Bus Cycle – Data Write Waveforms
ALE
TLHLL
TWHLH
TLLWL
TWLWH
WR
TAVWL
TLLAX
TAVLL
TQVWH
TWHQX
P0
P2
A7:0
D7:0
Data Out
A15:8
D15:81
Data Out
Note:
D15:8 is the content of DAT16H SFR.
6.3.3
SPI Interface
6.3.3.1
Definition of Symbols
Table 12. SPI Interface Timing Symbol Definitions
Signals
Conditions
High
C
I
Clock
H
L
Data In
Data Out
Low
O
V
X
Z
Valid
No Longer Valid
Floating
23
4173ES–USB–09/07
6.3.3.2
Timings
Table 13. SPI Interface Master AC Timing
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Symbol
Parameter
Min
Max
Unit
Slave Mode
TCHCH
Clock Period
8
TOSC
TOSC
TOSC
ns
TCHCX
Clock High Time
Clock Low Time
SS Low to Clock edge
3.2
3.2
200
100
100
TCLCX
TSLCH, TSLCL
T
T
T
T
T
T
T
IVCL, TIVCH
CLIX, TCHIX
CLOV, TCHOV
CLOX, TCHOX
CLSH, TCHSH
IVCL, TIVCH
CLIX, TCHIX
Input Data Valid to Clock Edge
Input Data Hold after Clock Edge
Output Data Valid after Clock Edge
Output Data Hold Time after Clock Edge
SS High after Clock Edge
Input Data Valid to Clock Edge
Input Data Hold after Clock Edge
SS Low to Output Data Valid
Output Data Hold after SS High
SS High to SS Low
ns
ns
100
ns
0
ns
0
ns
100
100
ns
ns
TSLOV
TSHOX
TSHSL
TILIH
130
130
ns
ns
(1)
Input Rise Time
2
μs
μs
ns
ns
TIHIL
Input Fall Time
2
TOLOH
TOHOL
Output Rise Time
100
100
Output Fall Time
Master Mode
TCHCH
Clock Period
4
TOSC
TOSC
TOSC
ns
TCHCX
Clock High Time
1.6
1.6
50
50
TCLCX
Clock Low Time
TIVCL, TIVCH
Input Data Valid to Clock Edge
Input Data Hold after Clock Edge
Output Data Valid after Clock Edge
Output Data Hold Time after Clock Edge
Input Data Rise Time
T
T
CLIX, TCHIX
ns
CLOV, TCHOV
65
ns
TCLOX, TCHOX
TILIH
0
ns
2
2
μs
TIHIL
Input Data Fall Time
μs
TOLOH
Output Data Rise Time
50
50
ns
TOHOL
Output Data Fall Time
ns
Notes: 1. Value of this parameter depends on software.
2. Test conditions: capacitive load on all pins = 100 pF
24
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.3.3
Waveforms
Figure 6-12. SPI Slave Waveforms (SSCPHA = 0)
SS
(input)
TSLCH
TCLSH
TCHSH
TCHCH
TSHSL
TSLCL
TCLCH
SCK
(SSCPOL = 0)
(input)
TCHCX
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(input)
TCLOX
TCHOX
TCLOV
TCHOV
TSLOV
SLAVE MSB OUT
TSHOX
MISO
(output)
BIT 6
SLAVE LSB OUT
1
TCHIX
TCLIX
TIVCH
TIVCL
MOSI
(input)
MSB IN
BIT 6
LSB IN
Note:
1. Not Defined but generally the MSB of the character which has just been received.
Figure 6-13. SPI Slave Waveforms (SSCPHA = 1)
SS1
(output)
TCHCH
TCLCH
SCK
(SSCPOL = 0)
(output)
TCHCX
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(output)
TIVCH
TCHIX
TIVCL TCLIX
SI
(input)
MSB IN
BIT 6
TCLOV
TCHOV
LSB IN
TCLOX
TCHOX
SO
(output)
Port Data
MSB OUT
BIT 6
LSB OUT
Port Data
Note:
1. Not Defined but generally the LSB of the character which has just been received.
25
4173ES–USB–09/07
Figure 6-14. SPI Master Waveforms (SSCPHA = 0)
SS1
(input)
TSLCH
TCLSH
TCHSH
TSLCL
TCHCH
TSHSL
TCLCH
SCK
(SSCPOL = 0)
(input)
TCHCX
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(input)
TCHOV
TCLOV
TCHOX
TCLOX
TSLOV
SLAVE MSB OUT
TSHOX
MISO
(output)
BIT 6
SLAVE LSB OUT
1
TIVCH
TIVCL
TCHIX
TCLIX
MOSI
(input)
MSB IN
BIT 6
LSB IN
Note:
1. SS handled by software using general purpose port pin.
Figure 6-15. SPI Master Waveforms (SSCPHA = 1)
SS1
(output)
TCHCH
TCLCH
SCK
(SSCPOL = 0)
(output)
TCHCX
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(output)
TIVCH
TCHIX
TIVCL TCLIX
SI
(input)
MSB IN
TCLOV
BIT 6
LSB IN
TCLOX
TCHOX
TCHOV
SO
(output)
Port Data
MSB OUT
BIT 6
LSB OUT
Port Data
Note:
1. SS handled by software using general purpose port pin.
6.3.4
Two-wire Interface
6.3.4.1
Timings
Table 17. TWI Interface AC Timing
26
AT89C5132
4173ES–USB–09/07
AT89C5132
VDD = 2.7 to 3.3 V, TA = -40 to +85°C
INPUT
Min
OUTPUT
Min
Symbol
THD; STA
TLOW
Parameter
Max
Max
(4)
(4)
(4)
Start condition hold time
SCL low time
14·TCLCL
16·TCLCL
14·TCLCL
1 μs
4.0 μs(1)
4.7 μs(1)
4.0 μs(1)
THIGH
SCL high time
(2)
TRC
SCL rise time
-
TFC
SCL fall time
0.3 μs
0.3 μs(3)
20·TCLCL(4)- TRD
1 μs(1)
TSU; DAT1
TSU; DAT2
TSU; DAT3
THD; DAT
TSU; STA
TSU; STO
TBUF
Data set-up time
250 ns
250 ns
250 ns
0 ns
SDA set-up time (before repeated START condition)
SDA set-up time (before STOP condition)
Data hold time
(4)
8·TCLCL
8·TCLCL(4) - TFC
4.7 μs(1)
(4)
Repeated START set-up time
STOP condition set-up time
Bus free time
14·TCLCL
14·TCLCL
14·TCLCL
1 μs
(4)
(4)
4.0 μs(1)
4.7 μs(1)
(2)
TRD
SDA rise time
-
TFD
SDA fall time
0.3 μs
0.3 μs(3)
Notes: 1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of 100 kbit/s.
2. Determined by the external bus-line capacitance and the external bus-line pull-up resistor, this
must be < 1 μs.
3. Spikes on the SDA and SCL lines with a duration of less than 3·TCLCL will be filtered out. Maxi-
mum capacitance on bus-lines SDA and
SCL= 400 pF.
4. TCLCL= TOSC= one oscillator clock period.
6.3.4.2
Waveforms
Figure 6-16. Two Wire Waveforms
Repeated START condition
START or Repeated START condition
Trd
START condition
Tsu;STA
STOP condition
0.7 VDD
0.3 VDD
SDA
(INPUT/OUTPUT)
Tsu;STO
Tbuf
Tfd
Tsu;DAT3
Trc
Tfc
0.7 VDD
0.3 VDD
SCL
(INPUT/OUTPUT)
Thigh
Tsu;DAT2
Tlow
Thd;STA
Thd;DAT
Tsu;DAT1
27
4173ES–USB–09/07
6.3.5
MMC Interface
6.3.5.1
Definition of Symbols
Table 14. MMC Interface Timing Symbol Definitions
Signals
Clock
Conditions
High
C
D
O
H
L
Data In
Low
Data Out
V
X
Valid
No Longer Valid
6.3.5.2
Timings
Table 15. MMC Interface AC Timings
VDD = 2.7 to 3.3 V, TA = -40 to +85°C, CL ≤ 100pF (10 cards)
Symbol
Parameter
Min
50
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
TCHCH
TCHCX
TCLCX
TCLCH
TCHCL
TDVCH
TCHDX
TCHOX
TOVCH
Clock Period
Clock High Time
10
Clock Low Time
10
Clock Rise Time
10
10
Clock Fall Time
Input Data Valid to Clock High
Input Data Hold after Clock High
Output Data Hold after Clock High
Output Data Valid to Clock High
3
3
5
5
6.3.5.3
Waveforms
Figure 6-17. MMC Input Output Waveforms
TCHCH
TCHCX
TCLCX
MCLK
TCHCL
TCLCH
TIVCH
TCHIX
MCMD Input
MDAT Input
TCHOX
TOVCH
MCMD Output
MDAT Output
28
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.6
Audio Interface
6.3.6.1
Definition of Symbols
Table 16. Audio Interface Timing Symbol Definitions
Signals
Clock
Conditions
High
C
O
S
H
L
Data Out
Low
Data Select
V
X
Valid
No Longer Valid
6.3.6.2
Timings
Table 17. Audio Interface AC timings
VDD = 2.7 to 3.3V, TA = -40 to +85°C, CL ≤ 30pF
Symbol
TCHCH
TCHCX
TCLCX
TCLCH
TCHCL
TCLSV
Parameter
Min
Max
Unit
ns
Clock Period
325.5(1)
Clock High Time
Clock Low Time
Clock Rise Time
Clock Fall Time
30
30
ns
ns
10
10
10
10
ns
ns
Clock Low to Select Valid
Clock Low to Data Valid
ns
TCLOV
Note:
ns
32-bit format with Fs = 48 kHz.
6.3.6.3
Waveforms
Figure 6-18. Audio Interface Waveforms
TCHCH
TCHCX
TCLCX
DCLK
TCHCL
TCLCH
TCLSV
DSEL
DDAT
Right
Left
TCLOV
29
4173ES–USB–09/07
6.3.7
Analog to Digital Converter
6.3.7.1
Definition of Symbols
Table 18. Analog to Digital Converter Timing Symbol Definitions
Signals
Clock
Conditions
High
C
E
H
L
Enable (ADEN bit)
Low
Start Conversion
(ADSST bit)
S
6.3.7.2
Characteristics
Table 18. Analog to Digital Converter AC Characteristics
VDD = 2.7 to 3.3 V, TA = -40 to +85°C
Symbol
Parameter
Clock Period
Min
Max
Unit
μs
TCLCL
TEHSH
TSHSL
4
Start-up Time
4
μs
Conversion Time
11·TCLCL
μs
Differential non-
linearity error(1)(2)
DLe
ILe
1
2
LSB
LSB
Integral non-linearity
errorss(1)(3)
OSe
Ge
Offset error(1)(4)
Gain error(1)(5)
4
4
LSB
LSB
Notes: 1. AVDD= AVREFP= 3.0 V, AVSS= AVREFN= 0 V. ADC is monotonic with no missing code.
2. The differential non-linearity is the difference between the actual step width and the ideal step
width (see Figure 6-20).
3. The integral non-linearity is the peak difference between the center of the actual step and the
ideal transfer curve after appropriate adjustment of gain and offset errors (see Figure 6-20).
4. The offset error is the absolute difference between the straight line which fits the actual trans-
fer curve (after removing of gain error), and the straight line which fits the ideal transfer curve
(see Figure 6-20).
5. The gain error is the relative difference in percent between the straight line which fits the actual
transfer curve (after removing of offset error), and the straight line which fits the ideal transfer
curve (see Figure 6-20).
30
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.7.3
Waveforms
Figure 6-19. Analog-to-Digital Converter Internal Waveforms
CLK
TCLCL
ADEN Bit
TEHSH
ADSST Bit
TSHSL
Figure 6-20. Analog-to-Digital Converter Characteristics
Offset Gain
Error Error
Code Out
OSe
Ge
1023
1022
1021
1020
1019
1018
Ideal Transfer Curve
7
6
5
Example of an Actual Transfer Curve
Center of a Step
4
3
2
1
Integral Non-linearity (ILe)
Differential Non-linearity (DLe)
1 LSB
(Ideal)
0
0
AVIN (LSBideal)
1
2
3
4
5
6
7
1018 1019 1020 1021 1022 1023 1024
Offset
Error
OSe
31
4173ES–USB–09/07
6.3.8
Flash Memory
6.3.8.1
Definition of Symbols
Table 19. Flash Memory Timing Symbol Definitions
Signals
ISP
Conditions
Low
S
R
B
L
V
X
RST
Valid
FBUSY flag
No Longer Valid
6.3.8.2
Timings
Table 20. Flash Memory AC Timing
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Symbol
Parameter
Min
50
Typ
Max
Unit
ns
TSVRL
TRLSX
TBHBL
NFCY
TFDR
Input ISP Valid to RST Edge
Input ISP Hold after RST Edge
FLASH Internal Busy (Programming) Time
Number of Flash Write Cycles
Flash Data Retention Time
50
ns
10
ms
100K
10
Cycle
Year
6.3.8.3
Waveforms
Figure 6-21. Flash Memory – ISP Waveforms
RST
TSVRL
TRLSX
ISP(1)
Note:
page 18).
Figure 6-22. Flash Memory – Internal Busy Waveforms
FBUSY bit
TBHBL
6.3.9
External Clock Drive and Logic Level References
6.3.9.1
Definition of Symbols
Table 21. External Clock Timing Symbol Definitions
Signals
Clock
Conditions
High
C
H
L
Low
X
No Longer Valid
32
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.9.2
Timings
Table 22. External Clock AC Timings
VDD = 2.7 to 3.3V, TA= -40 to +85°C
Symbol
TCLCL
Parameter
Min
50
10
10
3
Max
Unit
ns
ns
ns
ns
ns
%
Clock Period
High Time
TCHCX
TCLCX
TCLCH
TCHCL
TCR
Low Time
Rise Time
Fall Time
3
Cyclic Ratio in X2 Mode
40
60
6.3.9.3
Waveforms
Figure 6-23. External Clock Waveform
TCLCH
TCHCX
VDD - 0.5
VIH1
TCLCX
VIL
0.45 V
TCHCL
TCLCL
Figure 6-24. AC Testing Input/Output Waveforms
INPUTS
OUTPUTS
VIH min
VIL max
VDD - 0.5
0.7 VDD
0.3 VDD
0.45 V
Notes: 1. During AC testing, all inputs are driven at VDD -0.5V for a logic 1 and 0.45V for a logic 0.
2. Timing measurements are made on all outputs at VIH min for a logic 1 and VIL max for a logic 0.
Figure 6-25. Float Waveforms
VLOAD + 0.1V
LOAD - 0.1V
VOH - 0.1V
OL + 0.1V
VLOAD
Timing Reference Points
V
V
Note:
For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a
100 mV change from the loading VOH/VOL level occurs with IOL/IOH = 20 mA.
33
4173ES–USB–09/07
7. Ordering Information
Possible Order Entries(1)
Max
Frequency
(MHz)
Temperature
Range
Memory Size
Supply
Voltage
Product
Marking
Part Number
(Bytes)
Package
Packing
AT89C5132-ROTIL
64K Flash
3V
Industrial
40
TQFP80
Tray
895132-IL
Industrial &
Green
AT89C5132-ROTUL
64K Flash
3V
40
TQFP80
Tray
895132-UL
Note:
1. PLCC84 package only available for development board.
34
AT89C5132
4173ES–USB–09/07
AT89C5132
8. Package Information
8.1
TQFP80
35
4173ES–USB–09/07
8.2
PLCC84
36
AT89C5132
4173ES–USB–09/07
AT89C5132
9. Datasheet Revision History for AT89C5132
9.1
Changes from 4173A-08/02 to 4173B-03/04
1. Suppression of ROM product version.
2. Suppression of TQFP64 package.
9.2
Changes from 4173B-03/04 - 4173C - 07/04
1. Add USB connection schematic in USB section.
2. Add USB termination characteristics in DC Characteristics section.
3. Page access mode clarification in Data Memory section.
9.3
9.4
Changes from 4173C-07/04 - 4173D - 01/05
1. Interrupt priority number clarification to match number defined by development tools.
Changes from to 4317D - 01/05 to 4173E - 09/07
1. Added green product ordering information.
2. Removed ‘Preliminary’ status. Product now fully Industrialised.
37
4173ES–USB–09/07
Atmel Corporation
Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Memory
RF/Automotive
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Regional Headquarters
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Fax: (44) 1355-242-743
Literature Requests
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as compo-
nents in applications intended to support or sustain life.
©2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and Everywhere You Are® are the trademarks or regis-
tered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Printed on recycled paper.
4173ES–USB–09/07
|