Texas Instruments DUAL SOCKET PC CARD CONTROLLER PCI1520 User Manual

Application Report  
SCPA033 - October 2002  
PCI1520 Implementation Guide  
Computer Connectivity Solutions  
ABSTRACT  
This document is provided to assist platform designers using the PCI1520 dual-socket PC  
Card controller. Detailed information can be found in the PCI1520 data manual.  
However, this document provides design suggestions for the various options when  
designing in the PCI1520.  
Contents  
1
2
PCI1520 Typical System Implementation ....................................................................................................................... 3  
Power Considerations...................................................................................................................................................... 4  
2.1 Internal Voltage Regulator ........................................................................................................................................ 4  
2.2 Clamping Rails.......................................................................................................................................................... 4  
2.3 Bypass Capacitors .................................................................................................................................................... 4  
Power Switch Implementation......................................................................................................................................... 5  
PCI Bus Interface.............................................................................................................................................................. 6  
PC Card Interface.............................................................................................................................................................. 7  
Miscellaneous Pin Interface............................................................................................................................................. 8  
6.1 Multifunction Terminals ............................................................................................................................................. 8  
6.2 SPKROUT................................................................................................................................................................. 8  
6.3 SUSPEND#............................................................................................................................................................... 8  
Interrupt Configurations .................................................................................................................................................. 9  
7.1 Parallel PCI Interrupts Only....................................................................................................................................... 9  
7.2 Parallel IRQ and Parallel PCI Interrupts.................................................................................................................... 9  
7.3 Serial IRQ and Parallel PCI Interrupts....................................................................................................................... 9  
7.4 Serial IRQ and Serial PCI Interrupts ......................................................................................................................... 9  
Software Considerations ............................................................................................................................................... 10  
8.1 EEPROM Configuration .......................................................................................................................................... 10  
8.2 BIOS Considerations............................................................................................................................................... 11  
3
4
5
6
7
8
8.2.1  
8.2.2  
8.2.3  
8.2.4  
PCI Configuration Registers (Standard).................................................................................................... 11  
PCI Configuration Registers (TI Extension) .............................................................................................. 12  
ExCA Compatibility Registers................................................................................................................... 12  
CardBus Socket Registers........................................................................................................................ 12  
9
Power Management Considerations............................................................................................................................. 13  
9.1 D3 Wake Information .............................................................................................................................................. 13  
9.1.1  
9.1.2  
GRST# Only Registers ............................................................................................................................. 14  
PME# Context Registers........................................................................................................................... 15  
9.2 PME#/RI_OUT# Behavior....................................................................................................................................... 15  
9.3 CLKRUN# Protocol ................................................................................................................................................. 15  
9.4 SUSPEND#............................................................................................................................................................. 16  
Pin Compatibility with Other Devices ........................................................................................................................... 16  
Migration to the PCI1520 from the PCI1420.................................................................................................................. 17  
11.1 Hardware and Pin Assignment Changes ................................................................................................................ 17  
11.2 Configuration Register Changes ............................................................................................................................. 18  
11.3 Other Functional Differences .................................................................................................................................. 19  
Migration to the PCI1420 from the PCI1225.................................................................................................................. 20  
12.1 Hardware and Pin Assignment Changes ................................................................................................................ 20  
12.2 Configuration Register Changes ............................................................................................................................. 21  
12.3 Other Functional Differences .................................................................................................................................. 21  
Reference Schematics ................................................................................................................................................... 22  
References ...................................................................................................................................................................... 24  
10  
11  
12  
13  
14  
1
SCPA033  
1
PCI1520 Typical System Implementation  
The figure below represents a typical implementation of the PCI1520 PC Card Controller. The  
device serves as a bridge between a PCI Bus and a PC Card interface. The PCI1520 will  
operate only with the PCI Bus as a primary bus and the PC Card interface as the secondary  
bus. The PC Card interface operates with both CardBus (32-bit) and 16-bit PC Cards.  
Vcc/Vpp  
TPS2226A  
Power  
Switch  
4
3
P2C Bus  
Socket A  
PCI1520  
CardBus  
Controller  
Socket B  
PME#  
2
I2C Bus  
IRQSER  
Interrupt  
Controller  
Serial  
EEPROM  
(Optional)  
CardBus Controller Block  
System Side  
Figure 1. Typical System Implementation  
A power switch is necessary in order to control power to the PC Card sockets. The  
recommended power switch is the TPS2226A. Other possibilities include the TPS2224A,  
TPS2216A, and the TPS2206. The TPS2223A is also available but does not provide 12V Vpp.  
The EEPROM can be used to set various configuration registers but is not necessary if those  
registers are settable via software/BIOS for the system.  
IRQSER is used to pass both PCI interrupts and ISA style legacy interrupts to the system. Only  
PCI interrupts are necessary in order for CardBus cards to operate correctly. Some 16-bit PC  
Cards require ISA style legacy interrupts in order to function properly.  
PCI1520 Implementation Guide  
3
SCPA033  
2
Power Considerations  
2.1 Internal Voltage Regulator  
One of the major differences between the PCI1520 and previous Texas Instruments CardBus  
controllers is that the PCI1520 uses an internal voltage regulator to power the core logic at 2.5V.  
This allows for a more than 50% reduction in power consumption over previous controllers. The  
voltage regulator is enabled using the VR_EN# pin. If VR_EN# is high, the voltage regulator is  
disabled and VRPORT serves as a 2.5V external input to power the core. If VR_EN# is low, the  
voltage regulator is enabled and VRPORT serves as a 2.5V output. This 2.5V output cannot be  
used to power other devices and is only available externally in order to provide a 1µF bypass  
capacitor. VRPORT must have a 1µF bypass capacitor to ground in order for proper operation if  
the voltage regulator is enabled.  
2.2 Clamping Rails  
The PCI1520 has 3 clamping rails: VCCP, VCCA, and VCCB. VCCP is the PCI interface I/O  
clamp rail and can be either 3.3V or 5V depending on the system implementation. The PCI1520  
will only signal on the PCI bus at 3.3V but is 5V tolerant. VCCA and VCCB are connected to the  
PC Card power rails for Socket A and Socket B, respectively. These terminals serve as the  
clamping inputs for the PC Card interface to the PCI1520.  
2.3 Bypass Capacitors  
Standard design rules for power supply bypass should be followed. A value of 0.1µF is  
recommended for each of the power pins VCC, VCCP, VCCA, and VCCB.  
4
PCI1520 Implementation Guide  
SCPA033  
3
Power Switch Implementation  
The following figure shows the serial interface between the PCI1520 and the TPS2226A power  
switch:  
VPPA  
VCCA  
CLOCK  
DATA  
Socket A  
Socket B  
PCI1520  
TPS2226A  
VPPB  
VCCB  
LATCH  
Pull-down for  
I2C interface  
(optional)  
Pulldown if  
using internal  
clock  
Figure 2. Power Switch Implementation  
A power switch is necessary in order to control power to the PC Card sockets. When the  
PCI1520 receives a socket power request, it sends the appropriate data across the P2C  
interface (CLOCK, DATA, and LATCH). In turn, the power switch turns on the appropriate levels  
for VCC and VPP for that socket. A 2.7kpulldown on LATCH is used to indicate to the  
PCI1520 that an EEPROM is being used to program the PCI1520. CLOCK can be provided  
either internally or externally depending on bit 27 in System Control register in the PCI  
configuration space at offset 80h. If an external clock is used, the frequency should be between  
32kHz and 100kHz. If the internal clock is used, a 43k pulldown resistor is necessary.  
PCI1520 Implementation Guide  
5
SCPA033  
4
PCI Bus Interface  
The PCI1520 has a 33MHz, 32 bit PCI Interface compliant with PCI Local Bus Specification  
Revision 2.2.  
PCLK, AD31:0, C/BE#3:0, PAR, DEVSEL#, FRAME#, STOP#, TRDY#, IRDY#, GNT#,  
and REQ# are required PCI signals. All except PCLK, GNT#, and REQ# are bussed  
signals. PCLK is a 33MHz point-to-point clock. GNT# and REQ# are point-to-point  
signals form the PCI bus arbitrator.  
PERR#, SERR#, and LOCK# are optional PCI signals. PERR# and SERR# are bussed  
signals and should be pulled up to VCC if unused. LOCK# is available on a Multifunction  
Terminal. If LOCK# is not needed for system implementation, it should not be configured  
as such in the Multifunction Routing register (PCI configuration offset 8Ch).  
GRST# (Global reset) and PRST# (PCI reset) are both used to initialize the PCI1520.  
The assertion of GRST# puts the PCI1520 in its default state. The assertion of PRST#  
does not initialize GRST# only bits. PRST# also does not initialize PME# context bits if  
PME# in enabled. More information can be found in Section 9.1 – D3 Wake Information.  
IDSEL should be resistively coupled (100) to one of the address lines between AD31  
and AD11. Please refer to Section 3.2.2.3.5 (System Generation of IDSEL) and Section  
4.2.6, footnote 31 (Pinout Recommendation) of the PCI Local Bus Specification Revision  
2.2 for more information.  
PCI Interrupts can be routed through INTA# and INTB# through the Multifunction  
terminals. More information can be found in Section 7 – Interrupt Configurations.  
PCI CLKRUN# can be routed through Multifunction terminal 6. For more information,  
please refer to Section 9 – Power Management Considerations.  
PME# is used to signal Power Management Events. This signal is important for waking  
the PCI1520 from low power states. PME# is an open-drain signal.  
Pullup resistors are needed on the following PCI terminals: IRDY#, TRDY#, FRAME#,  
STOP#, DEVSEL#, PERR#, SERR#, LOCK#, PRST#, GRST#, INTA#, INTB#,  
CLKRUN#, and PME#.  
6
PCI1520 Implementation Guide  
SCPA033  
5
PC Card Interface  
There are two different modes on the PC Card interface. The first is 16-bit mode which is  
analogous to the legacy ISA bus. The second is 32-bit CardBus mode which is very similar  
to a PCI Bus. The terminal functions for these two modes are multiplexed and routed to the  
PC Card sockets. The following suggestions apply to the PC Card interface:  
Pullup resistors for the PC Card interface have been integrated into the PCI1520.  
These include: A14/CPERR#, A15/CIRDY#, A19/CBLOCK#, A20/CSTOP#,  
A21/CDEVSEL#, A22/CTRDY#, BVD2(SPKR#)/CAUDIO, CD1#/CCD1#,  
CD2#/CCD2#, INPACK#/CREQ#, READY/CINT#, RESET/CRST#, VS1#/CVS1,  
VS2#/CVS2, WAIT#/CSERR#, WP(IOIS16#)/CCLKRUN#.  
A switchable pullup/pulldown resistor has been implemented on  
BVD1(STSCHG#)/CSTSCHG. The pulldown is implemented when a CardBus card  
is being used or when the socket is empty. A pullup is implemented when a 16-bit  
PC card is being used.  
A damping resistor is necessary on the CCLK terminals between the PCI1520 and  
the PC Card sockets. The value is system dependent. If line impedance is in the  
range of 60-90, a 47resistor is recommended. For more information, please see  
the PC Card Standard Revision 7.1, Section 5.3.2.1.4.  
CD# line noise filtering is no longer required because the PCI1520 has an integrated  
digital noise filter.  
Three PC Card terminals on each socket are not necessary for CardBus mode but  
are necessary for 16-bit mode. These terminals are: CRSVD/D14, CRSVD/A18, and  
CRSVD/D2. These terminals must be connected to the PC Card Socket according to  
their 16-bit designations. By default, when in CardBus mode, these terminals are  
driven low. They can be tristated by setting bit 22 (CBRSVD) in the System Control  
register at PCI configuration offset 80h.  
Texas Instruments provides single socket CardBus controllers such as the PCI1510  
for systems requiring only one PC card socket. However, the PCI1520 can be used  
as a single socket controller simply by leaving the Socket B interface floating.  
PCI1520 Implementation Guide  
7
SCPA033  
6
Miscellaneous Pin Interface  
6.1 Multifunction Terminals  
The multifunction terminals (MFUNC6:0) can be programmed to serve many different roles using  
the Multifunction Routing register at PCI configuration offset 8Ch. The discrete ISA interrupts  
(IRQ15:2), INTA#, INTB#, and IRQSER are explained in Section 7 – Interrupt Configurations.  
CLKRUN#, D3STAT#, and RI_OUT# are discussed in Section 9 – Power Management  
Considerations. ZVSTAT, ZVSEL1#, and ZVSEL0# are used for ZV control. For more  
information, please refer to the PCI1520 Data Manual.  
LED_SKT, LEDA1, and LEDA2 can be used to indicate socket activity. When a PC Card is  
being accessed, these outputs will be driven high. LED_SKT will be driven high for access to  
either socket. LEDA1 and LEDA2 will only be driven high during access to their respective  
socket.  
GPE#, GPIx, and GPOx can be used to signal general purpose events to the system.  
CAUDPWM provides a PWM output for the CAUDIO terminals (as opposed to the binary output  
SPKROUT).  
PCI LOCK# is an optional PCI signal as mentioned in Section 4 – PCI Bus Interface.  
All unused multifunction terminals require a 43kpullup resistor.  
6.2 SPKROUT  
SPKROUT is the output to the host system that can carry SPKR# or CAUDIO through the  
PCI1520 from the PC Card interface. If SPKROUT is enabled for both sockets, it is driven as an  
exclusive-OR of the two inputs. A 43k pulldown resistor is required to prevent oscillation when  
SPKROUT is disabled and therefore tristated.  
6.3 SUSPEND#  
The assertion of SUSPEND# gates PRST#, GRST#, and PCLK from the PCI1520. More  
information can be found in Section 9 – Power Management Considerations. A 43kpullup  
resistor is required on SUSPEND#. SUSPEND# cannot be low during boot.  
8
PCI1520 Implementation Guide  
SCPA033  
7
Interrupt Configurations  
The PCI1520 provides system designers with great flexibility in configuring interrupts. The  
PCI1520 allows four interrupt modes which are selected via bits 2:1 of the Device Control  
register at PCI offset 92h.  
PCI interrupts are available on INTA# and INTB#. These signals are available on MFUNC0 and  
MFUNC1 respectively. The Multifunction Routing register at PCI configuration offset 8Ch must  
be programmed correspondingly. If MFUNC1 is not available (i.e. EEPROM implementations  
which use MFUNC1 as SDA), the INTRTIE bit can be set at bit 29 in the System Control register  
at PCI offset 80h. This allows both INTA# and INTB# signaling to both be reported on INTA#.  
PCI interrupts can also be signaled through IRQSER.  
ISA style IRQ interrupts are available on IRQ15:2. These signals are available on MFUNC6:0.  
These interrupts are necessary for some 16-bit PC Cards to function properly. IRQ interrupts  
can also be signaled through IRQSER.  
IRQSER is available on MFUNC3 and requires a 43k pullup resistor to VCC.  
7.1 Parallel PCI Interrupts Only  
The parallel PCI interrupts only mode is selected by programming bits 2:1 to a value of 00b.  
This allows interrupts to be routed through INTA# and INTB#. This is not a recommended  
interrupt configuration because many 16-bit PC Cards require legacy ISA interrupts and will not  
function properly.  
7.2 Parallel IRQ and Parallel PCI Interrupts  
The parallel IRQ and parallel PCI interrupts mode is selected by programming bits 2:1 to a value  
of 01b. This allows interrupts to be routed through IRQ15:2, INTA#, and INTB#. This is not a  
recommended interrupt configuration because this requires all the multifunction terminals to be  
used as interrupts which limits other functions on the PCI1520.  
7.3 Serial IRQ and Parallel PCI Interrupts  
The serial IRQ and parallel PCI interrupts mode is selected by programming bits 2:1 a value of  
10b. This allows interrupts to be routed through IRQSER, INTA#, and INTB#. This is the  
recommended interrupt configuration for a PCI add-in card implementation of the PCI1520.  
INTA# and INTB# can be routed through the PCI edge connector while IRQSER must be  
attached to a Serial IRQ input on the motherboard. If no Serial IRQ input is available, this mode  
still allows CardBus cards to function properly. However, many 16-bit cards will not.  
7.4 Serial IRQ and Serial PCI Interrupts  
The serial IRQ and serial PCI interrupts mode is selected by programming bits 2:1 to a value of  
11b. This allows all interrupts to be routed through IRQSER. This is the recommended interrupt  
configuration for all designs other than PCI add-in cards. It is the simplest method of routing  
interrupts and allows the other multifunction terminals to be used for other purposes.  
PCI1520 Implementation Guide  
9
SCPA033  
8
Software Considerations  
The PCI1520 is natively supported by Windows XP. The PCI1520 will be recognized natively as  
a Generic CardBus Controller under Windows 2000, Windows ME, and Windows 98SE. The  
device will function properly using this driver. However, it is recommended that new drivers  
provided by Texas Instruments be used for non-XP systems. These drivers have a few small  
tweaks and allow the device to be reported in Device Manager properly.  
Other operating systems are not supported directly by Texas Instruments. However, many non-  
Microsoft operating systems have generic CardBus device drivers which are compatible with the  
PCI1520. Any driver which was compatible with a previous Texas Instruments CardBus  
controller (such as the PCI1225 or PCI1420) or the Intel 82365SL should also be compatible  
with the PCI1520.  
8.1 EEPROM Configuration  
The following diagram represents the implementation of an EEPROM for the PCI1520 for  
configuration:  
Vcc  
LATCH  
SDA  
SCL  
TPS2226A  
EEPROM  
PCI1520  
Figure 3. EEPROM Implementation  
On the rising edge of GRST#, if LATCH is low, the Serial Bus Detect bit (bit 3, PCI offset B3h) is  
set and the EEPROM contents are loaded into the PCI1520. MFUNC1 and MFUNC4 become  
SDA and SCL respectively. In order for the PCI1520 to detect the EEPROM and load  
configuration information, a pulldown resistor must be implemented on LATCH. Pullups are  
needed on SDA and SCL. The EEPROM slave address should be 1010000b. If the Serial Bus  
Detect bit is cleared after the EEPROM data is loaded, MFUNC1 and MFUNC4 are returned to  
their functions as indicated by the Multifunction Routing Register (PCI offset 8Ch).  
10  
PCI1520 Implementation Guide  
SCPA033  
The EEPROM loading map can be found in the data manual. The following is an example data  
file which could be loaded into the EEPROM for use with the PCI1520:  
; EEPROM Programming Data for the PCI1520 Customer Board  
; Configured for IRQ serialized interrupts and parallel PCI interrupts  
; Register  
Data  
Description  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0a  
0b  
0c  
0d  
0e  
0f  
10  
11  
12  
13  
14  
15  
16  
17  
18  
0x01  
0x03  
0x78  
0x56  
0x34  
0x12  
0xe0  
0x03  
0x00  
0x00  
0x60  
0xd0  
0x28  
0x02  
0x10  
0x00  
0x00  
0xc0  
0x00  
0x44  
0x00  
0x00  
0x84  
0x00  
0x00  
;Reference 1  
;04h Command Register, bit 8 (mapped from EEPROM bit 7), 6-5, 2-0  
;40h Sub-System Vendor ID Byte 0  
;40h Sub-System Vendor ID Byte 1  
;42h Sub-System ID Byte 0  
;42h Sub-System ID Byte 1  
;44h Legacy Bar Byte 0, bits 7-1  
;44h Legacy Bar Byte 1  
;44h Legacy Bar Byte 2  
;44h Legacy Bar Byte 3  
;80h System Control Byte 0 (default)  
;80h System Control Byte 1 (MRBURSTU=1 all others default)  
;80h System Control Byte 3 (INTRTIE=1, P2CCLK=1)  
;8ch MFUNC Byte 0 (MFUNC1=SDA, MFUNC0=INTA)  
;8ch MFUNC Byte 1 (MFUNC3=IRQSER, MFUNC2=GPI2)  
;8ch MFUNC Byte 2 (MFUNC5=GPI4, MFUNC4=SCL)  
;8ch MFUNC Byte 3 (MFUNC6=RSVD)  
;90h Retry Status bits 7, 6 (PCI Retry, CardBus Retry)  
;91h Card Control bits 7, 5 (Ring Indicate Enable, ZV Port Select)  
;92h Dev Cntr bits 6, 3-0 (3V Capa, IRQ serialized and parallel PCI)  
;93h Diagnostic bits 7, 4-0  
;a2h Power Management Capabilities bit 15 (PME#_Supp from D3cold=0)  
;00h ExCA ID and Revision bits 7-0  
;Och+CB Socket Force Event Function 0 bit 27 (ZVSUPPORT=0)  
;Och+CB Socket Force Event Function 1 bit 27 (ZVSUPPORT=0)  
8.2 BIOS Considerations  
This section provides a high-level overview of the registers which need to be programmed by the  
BIOS upon initialization. In general, the only registers which must be programmed for proper  
operation within a Windows operating system are those registers which are EEPROM loadable.  
Other registers may need to be changed according to system implementation. Microsoft  
provides the following reference documents concerning initialization of CardBus controllers in  
Windows:  
8.2.1 PCI Configuration Registers (Standard)  
Cache Line Size Register (PCI offset 0Ch) – This register indicates the size in doublewords of  
a cache line. This register is system architecture dependent.  
PCI1520 Implementation Guide  
11  
SCPA033  
Latency Timer Register (PCI offset 0Dh) – This register indicates the number of PCI clocks  
the PCI1520 will be allowed access to the PCI bus if another master has its REQ# asserted.  
The recommended value is 40h. However, the value should be dependent on the system  
implementation and which devices need priority.  
CardBus Latency Timer Register (PCI offset 1Bh) – This register indicates the number of  
CardBus clocks the PCI1520 will be allowed access on the CardBus interface. Because the  
CardBus interface is a point-to-point interface, the PCI1520 does not deassert CGNT# until a  
transaction is finished. Therefore, this register has little effect on the system.  
Subsystem Vendor ID and Subsystem ID Registers (PCI offsets 40h and 42h) – These  
registers are used for subsystem and option card identification purposes. Typically, these  
registers contain the OEM vendor ID and an OEM identified designator. These fields can be  
programmed using the EEPROM or BIOS. If using BIOS, the SUBSYSRW bit (System Control  
register, bit 5) must be cleared to 0. The SSVID and SSID registers can now be written. The  
SUBSYSRW bit should be set to 1 after the registers are written.  
8.2.2 PCI Configuration Registers (TI Extension)  
System Control Register (PCI offset 80h) – This register contains many important system  
dependent variables. Please refer to the datasheet for more details. Of possible interest to the  
BIOS programmer: SER_STEP, INTRTIE, P2CCLK, MRBURSTDN, MRBURSTUP, and RIMUX.  
Multifunction Routing Register (PCI offset 8Ch) – This register controls the seven  
multifunction terminals of the PCI1520. This register must be set before the interrupt mode is  
programmed in the Device Control register (PCI offset 92h).  
Card Control Register (PCI offset 91h) – This register contains enable bits for RI_OUT# and  
SPKROUT.  
Device Control Register (PCI offset 92h) – This register contains the interrupt mode bits.  
Power Management Capabilities Register (PCI offset A2h) – This register is important for  
systems needing to wake from the D3 power state. Bit 15 reflects whether or not PME# is  
supported from D3cold. Bit 4 is tied to bit 15 indicating that if PME# is supported from D3cold,  
the system must be providing auxiliary power.  
Power Management Control and Status Register (PCI offset A4h) – This register contains  
the PME# enable bit (bit 8).  
8.2.3 ExCA Compatibility Registers  
ExCA Interrupt and General-Control Register (ExCA offset 03/43h) – This register is used to  
route CSTSCHG interrupts via PCI interrupts.  
8.2.4 CardBus Socket Registers  
Socket Control Register and Socket Power Management Register (CB offsets 10h and  
20h) – These registers can be used to characterize how CB CLKRUN# functions.  
12  
PCI1520 Implementation Guide  
SCPA033  
9
Power Management Considerations  
9.1 D3 Wake Information  
A power management event (PME) is the process by which a PCI or CardBus function can  
request a change of its current power consumption state. Typically, a device uses PME# to  
request a change from a power savings state to the fully operational state, D0. PME Context is  
defined as the functional state information and logic required to generate PMEs, report PME  
status, and enable PMEs. PCI Function Context refers to the small amounts of information held  
internal to the function. This includes not only the contents of the function’s PCI registers, but  
also information about the operation states of the function including state machine context and  
other internal mechanisms.  
When global reset (GRST#) is asserted, the PCI1520 is completely non-functional and is in a  
default state. Output buffers are tristated and internal registers are reset. The result of PCI  
reset (PRST#) being asserted is dependent on whether PME# is enabled or not. When PRST#  
is asserted with neither function enabled for PME#, it causes the PCI1520 to tristate all output  
buffers and reset all internal registers except for those considered ‘GRST# Only Registers’. If  
PME# is enabled for either socket, the PCI1520 will maintain its ‘PME# Context Registers’.  
According to the PCI Bus Power Management Interface Specification for PCI to CardBus  
Bridges, a device returning to D0 from D3hot is required to assert an internal reset. The PCI  
reset may or may not be asserted by the system. However, for a device returning to D0 from  
D3cold however, PRST# must be asserted by the system.  
For a wake from D3cold, the device needs to save its PME# context in order for software to  
determine the source of the wake-up event. This is accomplished using PME# enable and  
saving the PME# context registers. However, the device must also maintain certain registers  
that are normally configured by BIOS at boot time. This is accomplished using GRST# and the  
‘GRST# Only Registers.’ This allows a system to be in a low power state and resumed quickly  
without needing BIOS to reprogram the device.  
The sequence of events at power up are that GRST# and PRST# should be asserted. 100 µs  
after PCLK is stable, GRST# can be deasserted. PRST# can be deasserted at the same time  
as GRST# or any time there after. At this point, GRST# will stay deasserted until the system  
completely cycles power and reboots. Now the system can put the PCI1520 into a lower power  
state and may or may not assert PRST#.  
The PCI1520 does not require a PCI clock to generate a PME# signal. However, it does require  
a voltage source such as Vaux to be supplied and the pullup on PME# must also be connected  
to Vaux. In addition, the VCCP pins and power switch must also have power in order to wake  
from a card. Vaux is limited to 200mA for each socket.  
For systems not implementing wake from D3, GRST# can be tied to PRST#.  
PCI1520 Implementation Guide  
13  
SCPA033  
9.1.1 GRST# Only Registers  
Global reset places all registers in their default state regardless of the state of the PME enable  
bit. The GRST# signal is gated only by the SUSPEND# signal. This means that assertion of  
SUSPEND# blocks the GRST# signal internally, thus preserving all register contents. The  
registers cleared only by GRST# are:  
Status register (PCI offset 06h): bits 15-11, 8  
Secondary status register (PCI offset 16h): bits 15-11, 8  
Interrupt pin register (PCI offset 3Dh): bits 1,0 (function 1 only)  
Subsystem vendor ID register (PCI offset 40h): bits 15-0  
Subsystem ID register (PCI offset 42h): bits 15-0  
PC Card 16-bit legacy mode base address register (PCI offset 44h): bits 31-1  
System control register (PCI offset 80h): bits 31-29, 27-13, 11, 6-0  
Multifunction routing register (PCI offset 8Ch): bits 27-0  
Retry status register (PCI offset 90h): bits 7-5, 3, 1  
Card control register (PCI offset 91h): bits 7-5, 2-0  
Device control register (PCI offset 92h): bits 7-5, 3-0  
Diagnostic register (PCI offset 93h): bits 7-0  
Power management capabilities register (PCI offset A2h): bit 15  
General-purpose event status register (PCI offset A8h): bits 15-14  
General-purpose event enable register (PCI offset AAh): bits 15-14, 11, 8, 4-0  
General-purpose output (PCI offset AEh): bits 4-0  
Serial bus data (PCI offset B0h): bits 7-0  
Serial bus index (PCI offset B1h): bits 7-0  
Serial bus slave address register (PCI offset B2h): bits 7-0  
Serial bus control and status register (PCI offset B3h): bits 7, 5-0  
ExCA identification and revision register (ExCA offset 00h): bits 7-0  
ExCA global control register (ExCA offset 1Eh): bits 2-0  
Socket present state register (CardBus offset 08h): bit 29  
Socket power management register (CardBus offset 20h): bits 25-24  
14  
PCI1520 Implementation Guide  
SCPA033  
9.1.2 PME# Context Registers  
If the PME# enable bit (bit 8) of the power-management control/status register (PCI offset A4h)  
is asserted, then the assertion of PRST# will not clear the following PME# context bits. If the  
PME# enable bit is not asserted, then the PME# context bits are cleared with PRST#. The  
PME# context bits are:  
Bridge control register (PCI offset 3Eh): bit 6  
System control register (PCI offset 80h): bits 10, 9, 8  
Power-management control/status register (PCI offset A4h): bits 15, 8  
ExCA power control register (ExCA offset 802h): bits 7, 5†, 4-3, 1-0 (†82365SL mode only)  
ExCA interrupt and general control register (ExCA offset 803h): bits 6-5  
ExCA card status change register (ExCA offset 804h): bits 11-8, 3-0  
ExCA card status-change-interrupt configuration register (ExCA offset 805h): bits 3-0  
CardBus socket event register (CardBus offset 00h): bits 3-0  
CardBus socket mask register (CardBus offset 04h): bits 3-0  
CardBus socket present state register (CardBus offset 08h): bits 13-7, 5-1  
CardBus socket control register (CardBus offset 10h): bits 6-4, 2-0  
9.2 PME#/RI_OUT# Behavior  
PME# and RI_OUT# are very important for power management. The PME# signal is useful for  
PCI power management systems. The RI_OUT# (Ring Indicate Out) signal is used for legacy  
power management systems. PME# and RI_OUT# are multiplexed on the same pin. The  
PCI1520 can also provide RI_OUT# on the Multifunction terminals.  
To enable passage of Ring signals from the PC Card interface, RINGEN (bit 7 ExCA offset 803)  
must be set to ‘1’, and RIENB (bit 7 PCI offset 91h) must be set to ‘1’. This is a per socket  
function.  
9.3 CLKRUN# Protocol  
CLKRUN# is a hardware method of clock control that can be used in parallel with other types of  
power management. For the PCI1520, PCI CLKRUN# can be programmed using the  
Multifunction Routing Register (PCI offset 8Ch) on MFUNC6. CardBus CLKRUN# is a required  
signal incorporated into the PC Card interface. The following bits can be used to adjust the  
operation of how PCI and CB CLKRUN# affect the PCI1520:  
Multifunction Routing register – MFUNC6 (PCI offset 8Ch, bits 27-24 set to 0001b). Requires  
a 43kpullup.  
KEEPCLK – System Control Register (PCI offset 80h, bit 1). Setting this bit to a ‘1’ will never  
allow the PCI CLKRUN# protocol to stop or slow the PCI clock.  
PCI1520 Implementation Guide  
15  
SCPA033  
STOPCLK – Socket Control Register (CB offset 10h, bit 7). This bit determines whether the CB  
CLKRUN# protocol is affected by the PCI CLKRUN# protocol.  
CLKCTRLEN – Socket Power Management Register (CB offset 20h, bit 16). This bit enables  
the CB CLKRUN# protocol.  
CLKCTRL – Socket Power Management Register (CB offset 20h, bit 0). This bit determines  
whether the CB CLKRUN# protocol will either stop or slow CCLK.  
9.4 SUSPEND#  
The assertion of the SUSPEND# signal gates PCLK, GRST#, PRST# from the PCI1520. The  
recommended implementation for SUSPEND# is to not use it for power management and simply  
connect a 43kpullup resistor. SUSPEND# is an unstandardized method of power  
management and causes many implementation problems. The following guidelines are  
provided to help reduce implementation issues.  
The main purpose of the PCI1520 SUSPEND# pin is to prevent PCI reset from clearing all  
register context which would require the reconfiguration of the PCI1520 by software. Asserting  
the PCI1520 SUSPEND# signal will also tri-state the controllers PCI outputs and gate the PCLK  
internally to the controller if there isn't any PCI transaction currently in process. Due to the tri-  
stated PCI outputs, it is important that the PCI bus not be parked on the PCI1520 when  
SUSPEND# is asserted.  
Another major point to note is that powerdown of a card slot due to card removal requires the  
use of either the Internal Oscillator or an externally supplied clock to the power switch. If an  
external clock is used and is removed during Suspend, the card slot will not power down and will  
remain powered. This opens the possibility of potential card damage. If a 3.3V card is inserted  
into the hot slot that was powered to 5V, card damage will most likely occur. It is therefore  
recommended that P2CCLK, bit 27 at PCI offset 80h is set to a '1' so that the Internal Oscillator  
is enabled. The CLOCK signal will then always be available as long as power is applied to the  
CB controller.  
10 Pin Compatibility with Other Devices  
The PCI1520 is pin compatible with the PCI1620 PC Card, Flash Media, and Smart Card  
Controller. This device has flash media and smart card terminals multiplexed on the PC Card  
interface to allow for convenient access to many different media types. In order to design a PCB  
for an upgrade path to the PCI1620, one change must be made from a normal PCI1520 PCB. A  
48MHz clock is needed on the PCI1620. This clock input is located on pin 81 for the PDV  
package and pin W11 for the GHK package.  
The PCI1520 can also be designed on to the same PCB as other Texas Instruments CardBus  
controllers such as the single socket PCI1510 controller even though the two devices are not pin  
compatible. This can be done using a dual footprint for the devices on the PCB. For example, a  
designer may want the option of having a single or dual socket implementation on a single PCB.  
In this instance, a PCI1510 BGA (GGU) footprint can be placed inside a PCI1520 QFP (PDV)  
footprint. The traces for the PC Card socket A on the PCI1520 footprint are then connected to  
the PC Card socket traces on the PCI1510 footprint. For single socket implementations, only  
one PC Card socket is populated along with the PCI1510 controller. For dual socket  
implementation, both PC Card sockets are populated along with the PCI1520 controller.  
16  
PCI1520 Implementation Guide  
SCPA033  
11 Migration to the PCI1520 from the PCI1420  
The major differences between the PCI1520 and PCI1420 are pinout, lower power consumption,  
and lower cost. The pinout is changed on the PCI1520 in order to incorporate an internal  
voltage regulator which allows the core to operate at 2.5V. When moving from the PCI1225 to  
the PCI1520, please see Section 13 for the differences between the PCI1225 and PCI1420 in  
addition to the changes from this section.  
11.1 Hardware and Pin Assignment Changes  
The pinout on the PCI1520 is significantly changed from the PCI1420. This requires a  
PCB redesign.  
A low dropout voltage regulator is integrated into the PCI1520 to supply 2.5V core  
voltage. A voltage regulator enable pin (VR_EN#) has been added in place of one of the  
VCCP pins. A core voltage input/output (VRPORT) pin has been added in place of the  
VCCI pin. This pin is used to either input core voltage or allow for an external 1.0µF  
bypass capacitor depending on the value of VR_EN#. A typical implementation would  
enable the regulator by grounding VR_EN# and adding the bypass capacitor from  
VRPORT to ground. For further details, see the datasheet.  
The PCI1520 does not have a VCCI pin. Signals clamped to VCCI on the PCI1420 are  
clamped to VCCP on the PCI1520.  
A new power switch has been introduced for dual socket CardBus controllers. The  
TPS2226A is recommended for new designs although the TPS2216 and TPS2206 are  
still compatible with the PCI1520. All three power switches have very similar functionality  
and can be designed onto the same footprint.  
The PCI1520 has integrated pullup resistors on the two CCLKRUN#//WP(IOIS16#)  
terminals. All necessary pullup resistors on the PC Card interface have been integrated  
in the PCI1520.  
A switchable pullup/pulldown resistor has been implemented on the two  
CSTSCHG//BVD1(STSCHG#/RI#) terminals. The pullup is active when the 16BITCARD  
bit (bit 4 in the Socket Present State register) is ‘1’, otherwise the pulldown resistor is  
activated. This prevents unexpected PME# assertion.  
PCI1520 Implementation Guide  
17  
SCPA033  
11.2 Configuration Register Changes  
The device ID for the PCI1520 is AC55.  
Bit 23 in the System Control register (PCI offset 80h) is reserved on the PCI1520. On  
the PCI1420, this enabled PCI Bus power management specification revision 1.1  
reporting. The PCI1520 is compliant to revision 1.1 by default.  
The default value of the Multifunction Routing register (PCI offset 8Ch) has been  
changed from 00000000h on the PCI1420 to 00001000h in order to enable IRQSER on  
MFUNC3 by default.  
Bit 6 in the Diagnostic register (PCI offset 93h) is reserved on the PCI1520 instead of  
AOSPMEN. The AOSPMEN feature of disabling oscillator power management is no  
longer necessary.  
Bit 0 in the Diagnostic register (PCI offset 93h) is no longer Asynchronous Interrupt  
Enable. The functionality is no longer necessary. It is now STDZVEN which enables the  
new ZV register model.  
Bits 2-0 in the Power Management Capabilities register (PCI offset A2h) are now ‘010b’  
indicating that the PCI1520 is compliant to Revision 1.1 of the PCI Bus Power  
Management Specification.  
Bit 4 (AUX_PWR) in the Power Management Capabilities register (PCI offset A2h) is now  
tied to bit 15 (PME#_Support for D3Cold).  
D3_STAT# functionality has been added to MFUNC5, MFUNC4, and MFUNC2.  
D3_STAT# is asserted when PME# is enabled and both functions are placed in D3  
power state.  
Bit 27 in the Socket Present State register (Socket offset 08h) now indicates Zoom Video  
Support in that socket for the PCI1520. It is reserved in the PCI1420.  
Bit 27 in the Socket Force Event register (Socket offset 0Ch) now causes the  
ZVSUPPORT bit mentioned above to be set in the PCI1520. It is reserved in the  
PCI1420.  
Bits 11-9 in the Socket Control register (Socket offset 10h) were reserved and now are  
used for ZV control.  
Registers and bits previously referring to centralized or distributed DMA are now  
reserved (bits 19-16 System Control register at PCI offset 80h, DMA registers at PCI  
offsets 94h and 98h) (see explanation about DMA below).  
The EEPROM loading map has changed significantly to provide more control for  
applications needing an EEPROM (see datasheet for details).  
Two registers have been added to the PME# context list (ExCA Power Control register  
and ExCA Interrupt and General Control register).  
18  
PCI1520 Implementation Guide  
SCPA033  
11.3 Other Functional Differences  
The PCI1520 is natively supported by Windows XP. The PCI1520 will be recognized  
natively as a Generic CardBus Controller under Windows 2000, Windows ME, and  
Windows 98SE. The device will function properly using this driver. However, it is  
recommended that new drivers provided by Texas Instruments be used for non-XP  
systems. These drivers have a few small tweaks and allow the device to be reported in  
Device Manager properly.  
The latest version of the PC Card Standard (Revision 8.0) no longer supports centralized  
or distributed DMA for PC Cards. Therefore, the PCI1520 no longer supports centralized  
or distributed DMA. DMA was used by very few PC Cards, most of which are obsolete  
(DOS-based sound cards, DVD decoders).  
A new standardized ZV register model has been implemented in the PCI1520 (see  
datasheet for details). The PCI1520 is backward compatible with the legacy ZV register  
model used in previous CardBus controllers.  
The timing condition erratum which disabled the MFUNC1 and MFUNC4 pins because a  
non-existent EEPROM was detected has been fixed.  
SPKROUT# signal behavior is changed. The signal will stay low during socket power on  
an off. A pulldown resistor is required to prevent oscillation.  
Setting bit 15 of the Power Management Capabilities register is no longer required to  
preserve PME# context for a D3hot to D0 transition. This was an erratum in the  
PCI1420.  
PCI1520 Implementation Guide  
19  
SCPA033  
12 Migration to the PCI1420 from the PCI1225  
The major differences between the PCI1420 and PCI1225 are the ability to wake from the D3  
power state and the integration of the pullup resistors on the PC Card interface. This is done  
using a global reset pin.  
12.1 Hardware and Pin Assignment Changes  
The pinout changed slightly from the PCI1225 to the PCI1420. A VCC pin has been  
replaced by a global reset pin (GRST#). This requires a PCB redesign. This pin allows  
for wake from the D3 power state. Certain configuration registers are reset only by  
GRST# and not PRST#. This allows the device to save context since PCI Reset must be  
asserted on a D3 to D0 transition.  
For systems requiring wake from D3, GRST# should be connected to a power-on reset  
and PRST# should be connected to the system PCI Reset. When implementing GRST#  
in this way, it must be treated similar to PRST# in that PCI Clock must be stable for  
100µs before deassertion. The sequence of events should be: 1) Power on with GRST#  
and PRST# asserted, 2) Clock becomes stable, 3) 100µs later GRST# can be  
deasserted, 4) PRST# can be deasserted at the same time or any time after GRST# is  
deasserted.  
For systems not requiring wake from D3, GRST# can be tied to PRST# which is  
connected to system PCI Reset. For more information, please refer to the datasheet and  
the Section 9.1 – D3 Wake Information.  
All necessary pullup resistors on the PC Card interface have been integrated on the  
PCI1420 with the exception of CCLKRUN#//WP(IOIS16#).  
20  
PCI1520 Implementation Guide  
SCPA033  
12.2 Configuration Register Changes  
The device ID for the PCI1420 is AC51.  
The PCI1420 is both Intel 82365SL-DF and 82365SL register compatible. The PCI1225  
is only 82365SL-DF register compatible. Bit 2 in the System Control register (PCI offset  
80h) is now ExCA Power instead of reserved to allow for SL compatibility. The ExCA  
Power Control register (ExCA offset 02h) also changes in SL mode.  
Bit 23 in the System Control register (PCI offset 80h) is now used to allow the PCI1420  
to report as compliant to either revision 1.0 or 1.1 of the PCI Bus Power Management  
Specification. In the PCI1225, this bit is reserved.  
Some of the values of the Multifunction Routing register (PCI offset 8Ch) matrix have  
changed. When MFUNC5 = 1001b, it is now reserved instead of IRQ9. When MFUNC4  
= 1111b, it is now reserved instead of IRQ15. When MFUNC2 = 1011b, it is now  
reserved instead of IRQ11.  
Bit 7 in the Device Control register (PCI offset 92h) is now SKTPWR_LOCK instead of  
RSVD. This bit, when set to ‘1b’, stops software from powering down the PC Card  
socket while in the D3 power state. This may be necessary for wake on LAN.  
Bit 6 in the Diagnostic register (PCI offset 93h) is now AOSPMEN which disables the  
oscillator power management features. This bit is reserved in the PCI1225.  
Bit 14 in the Power Management Capabilities register (PCI offset A2h) is now read/write  
with a default of 1 indicating the PCI1420 supports PME# from D3cold when Vaux is  
provided. This bit is read-only zero in the PCI1225.  
12.3 Other Functional Differences  
The PCI1420 and PCI1225 are both natively supported by Windows XP, Windows 2000,  
Windows ME, and Windows 98SE.  
PCI1520 Implementation Guide  
21  
SCPA033  
13 Reference Schematics  
The following schematics show the most basic implementation of the PCI1520 possible. These  
schematics provide minimum functionality. All interrupts are routed using IRQSER.  
NOTE: THESE ARE THE PCI TERMINALS. PLEASE REFER TO SECTION 4  
3.3VCC  
FOR INFORMATION ON WHICH TERMINALS NEED PULLUP RESISTORS.  
VCCP  
PAR  
SERR#  
PERR#  
STOP#  
DEVSEL#  
TRDY#  
IRDY#  
C10  
.1uF  
C11  
C12  
.1uF  
.1uF  
FRAME#  
C/BE#[3..0]  
AD[31..0]  
IDSEL  
PCLK  
REQ#  
GNT#  
PRST#  
PME#  
U2A  
AD10  
AD9  
AD8  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
191  
190  
189  
188  
187  
186  
185  
184  
183  
182  
181  
180  
179  
178  
177  
176  
175  
174  
AD10  
AD9  
AD8  
C/BE0#  
AD7  
GND  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
GND  
AD23  
IDSEL  
PCLK  
AD24  
VCCP  
AD26  
AD27  
GRST#  
AD28  
AD29  
VCC  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
C/BE#0  
AD23  
AD24  
AD26  
AD27  
152  
153  
154  
155  
SPKROUT#  
LATCH  
CLOCK  
AD28  
AD29  
DATA  
R4  
43K  
PCI1520 (PCI)  
R5  
43K  
NOTE:  
R4 PULL-DOWN ON CLOCK  
REQUIRED WHEN USING  
INTERNAL OSC  
GRST#  
NOTE: GRST# IS A  
POWER-ON RESET. IT  
SHOULD BE ASSERTED AT  
POWER UP, WAIT AT  
LEAST 100US AFTER PCLK  
IS STABLE, THEN BE  
R6  
43K  
R7  
43K  
R8  
43K  
R9  
43K  
R10  
43K  
R11  
43K  
R12  
43K  
R13  
43K  
3.3VCC  
DEASSERTED FOR  
PROPER INITIALIZATION.  
PCI12V  
NOTE: IRQSER SHOULD BE  
ROUTED TO AN  
PCI5V  
INTERRUPT CONTROLLER.  
C13  
10uF  
C14  
.1uF  
IRQSER  
U3  
C15  
10uF  
C16  
.1uF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
30  
5VIN  
5VIN  
5VIN  
NC  
NC  
NC  
NC  
SHDN#  
12VIN  
BVPP  
BVCC  
BVCC  
BVCC  
NC  
OC#  
3.3VIN  
3.3VIN  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DATA  
CLOCK  
LATCH  
NC  
12VIN  
AVPP  
AVCC  
AVCC  
AVCC  
GND  
AVPP  
BVPP  
C17  
C18  
.1uF  
.1uF  
NC  
RESET#  
3.3VIN  
TPS2226A  
AVCC  
PCI3.3V  
BVCC  
C19  
C22  
C20  
10uF  
C21  
.1uF  
.1uF  
.1uF  
Figure 4. Reference Schematics – Page 1  
22  
PCI1520 Implementation Guide  
SCPA033  
3.3VCC  
BVCC  
AVCC  
C1  
1uF  
C2  
.1uF  
C3  
.1uF  
C4  
.1uF  
C5  
.1uF  
C6  
.1uF  
C7  
.1uF  
U1B  
C8  
.1uF  
C9  
.1uF  
A_A15  
A_A22  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
VCC  
A_CIRDY#//A_A15  
A_CTRDY#//A_A22  
A_CCLK//A_A16  
VCCA  
A_CDEVSEL#//A_A21  
A_CGNT#//A_WE#  
A_CSTOP#//A_A20  
GND  
A_CPERR#//A_A14  
A_CBLOCK#//A_A19  
A_CPAR//A_A13  
A_RSVD//A_A18  
A_CC/BE1#//A_A8  
A_CAD16//A_A17  
A_CAD14//A_A9  
A_CAD15//A_IOWR#  
A_CAD13//A_IORD#  
A_CAD12//A_A11  
A_CAD11//A_OE#  
A_CAD10//A_CE2#  
A_CAD9//A_A10  
A_CC/BE0#//A_CE1#  
GND  
A_CAD8//A_D15  
A_CAD7//A_D7  
A_RSVD//A_D14  
VCC  
A_CAD5//A_D6  
A_CAD6//A_D13  
A_CAD3//A_D5  
A_CAD4//A_D12  
A_CAD1//A_D4  
A_CAD2//A_D11  
A_CAD0//A_D3  
A_CCD1#//A_CD1#  
R1  
47  
B_CD1#  
B_D3  
B_D11  
B_D4  
B_D12  
B_D5  
B_D13  
B_D6  
B_D14  
B_CCD1#//B_CD1#  
B_CAD0//B_D3  
B_CAD2//B_D11  
B_CAD1//B_D4  
B_CAD4//B_D12  
B_CAD3//B_D5  
B_CAD6//B_D13  
B_CAD5//B_D6  
B_RSVD//B_D14  
GND  
B_CAD7//B_D7  
B_CAD8//B_D15  
B_CC/BE0#//B_CE1#  
B_CAD9//B_A10  
VR_EN#  
B_CAD10//B_CE2#  
B_CAD11//B_OE#  
B_CAD12//B_A11  
B_CAD13//B_IORD#  
B_CAD15//B_IOWR#  
B_CAD14//B_A9  
B_CAD16//B_A17  
B_CC/BE1#//B_A8  
B_RSVD//B_A18  
VCC  
A_A16  
A_A21  
A_WE#  
A_A20  
A_A14  
A_A19  
A_A13  
A_A18  
A_A8  
A_A17  
A_A9  
A_IOWR#  
A_IORD#  
A_A11  
A_OE#  
A_CE2#  
A_A10  
B_D7  
B_D15  
B_CE1#  
B_A10  
B_CE2#  
B_OE#  
B_A11  
B_IORD#  
B_IOWR#  
B_A9  
B_A17  
B_A8  
B_A18  
R2  
100  
A_CE1#  
A_D15  
A_D7  
A_D14  
B_A13  
B_A19  
B_A14  
B_CPAR//B_A13  
B_CBLOCK#//B_A19  
B_CPERR#//B_A14  
GND  
B_CSTOP#//B_A20  
B_CGNT#//B_WE#  
B_CDEVSEL#//B_A21  
VCCB  
A_D6  
A_D13  
A_D5  
A_D12  
A_D4  
A_D11  
A_D3  
A_CD1#  
90  
89  
88  
87  
86  
85  
84  
83  
B_A20  
B_WE#  
B_A21  
R3  
47  
B_A16  
B_CCLK//B_A16  
PCI1520 (CARDBUS)  
BVPP  
BVCC  
AVCC  
AVPP  
P1  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
GND  
GND  
B_CD1  
B_D3  
B_D11  
B_D4  
B_D12  
B_D5  
GND  
B_D13  
B_D6  
B_D14  
B_D7  
B_D15  
B_CE1  
B_CE2  
GND  
B_A10  
B_VS1  
B_OE  
B_IORD  
B_A11  
B_IOWR  
B_A9  
GND  
GND  
A_CD1  
A_D3  
A_D11  
A_D4  
A_D12  
A_D5  
GND  
A_D13  
A_D6  
A_D14  
A_D7  
A_D15  
A_CE1  
A_CE2  
GND  
A_A10  
A_VS1  
A_OE  
A_IORD  
A_A11  
A_IOWR  
A_A9  
B_CD1#  
B_D3  
B_D11  
B_D4  
B_D12  
B_D5  
A_CD1#  
A_D3  
A_D11  
A_D4  
A_D12  
A_D5  
B_D13  
B_D6  
B_D14  
B_D7  
B_D15  
B_CE1#  
B_CE2#  
A_D13  
A_D6  
A_D14  
A_D7  
A_D15  
A_CE1#  
A_CE2#  
B_A10  
A_A10  
B_VS1#  
B_OE#  
B_IORD#  
B_A11  
B_IOWR#  
B_A9  
A_VS1#  
A_OE#  
A_IORD#  
A_A11  
A_IOWR#  
A_A9  
GND  
B_A17  
B_A8  
GND  
A_A17  
A_A8  
A_A18  
A_A13  
A_A19  
A_A14  
A_A20  
GND  
B_A17  
B_A8  
B_A18  
B_A13  
B_A19  
B_A14  
B_A20  
A_A17  
A_A8  
A_A18  
A_A13  
A_A19  
A_A14  
A_A20  
B_A18  
B_A13  
B_A19  
B_A14  
B_A20  
GND  
B_WE  
B_A21  
B_READY/IREQ  
B_VCC  
B_NC  
B_VPP  
B_A16  
B_A22  
B_A15  
GND  
B_A23  
B_A12  
B_A24  
B_A7  
B_A25  
B_A6  
B_VS2  
GND  
B_A5  
B_RESET  
B_A4  
B_WAIT  
B_A3  
B_INPACK  
B_A2  
GND  
B_WE#  
B_A21  
B_READY  
A_WE#  
A_A21  
A_READY  
A_WE  
A_A21  
A_READY/IREQ  
A_VCC  
A_NC  
A_VPP  
A_A16  
A_A22  
A_A15  
GND  
A_A23  
A_A12  
A_A24  
A_A7  
A_A25  
A_A6  
A_VS2  
GND  
B_A16  
B_A22  
B_A15  
A_A16  
A_A22  
A_A15  
B_A23  
B_A12  
B_A24  
B_A7  
B_A25  
B_A6  
A_A23  
A_A12  
A_A24  
A_A7  
A_A25  
A_A6  
B_VS2#  
A_VS2#  
B_A5  
B_RESET  
B_A4  
B_WAIT#  
B_A3  
B_INPACK#  
A_A5  
A_RESET  
A_A4  
A_WAIT#  
A_A3  
A_A5  
A_RESET  
A_A4  
A_WAIT  
A_A3  
A_INPACK  
A-A2  
GND  
A_REG  
A_A1  
A_BVD2/SPKR  
A_A0  
A_INPACK#  
A_A2  
B_A2  
B_REG#  
B_A1  
B_BVD2  
B_A0  
B_BVD1  
B_D0  
B_D8  
A_REG#  
A_A1  
A_BVD2  
A_A0  
A_BVD1  
A_D0  
A_D8  
B_REG  
B_A1  
B_BVD2/SPKR  
B_A0  
B_BVD1/STSCHG  
B_D0  
B_D8  
GND  
B_D1  
B_D9  
B_D2  
A_BVD1/STSCHG  
A_D0  
A_D8  
GND  
A_D1  
A_D9  
B_D1  
B_D9  
B_D2  
B_D10  
B_WP  
B_CD2#  
A_D1  
A_D9  
A_D2  
A_D10  
A_WP  
A_CD2#  
8
7
6
5
4
3
2
1
A_D2  
B_D10  
B_WP/IOIS16  
B_CD2  
GND  
A_D10  
A_WP/IOIS16  
A_CD2  
GND  
GND  
GND  
C-1318619_R2 (CB Connector)  
Figure 5. Reference Schematics – Page 2  
PCI1520 Implementation Guide  
23  
SCPA033  
14 References  
1. PCI1520 GHK/PDV PC Card Controllers Data Manual (SCPS065A)  
2. PCI Local Bus Specification Revision 2.2  
3. PC Card Standard Revision 7.1  
4. PCI Bus Power Management Interface Specification Revision 1.1  
5. PCI Mobile Design Guide Revision 1.0  
24  
PCI1520 Implementation Guide  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  

Vivitar DVR 865HD User Manual
Sony SLV KA195CH User Manual
Sony HDR CX7 User Manual
Sony DVW 790WSP User Manual
Sony CX106E User Manual
Sigma SD10 User Manual
Samsung VP L 710 User Manual
Samsung MM12S(BL) User Manual
Samsung BD P1590C User Manual
Samsung 2043SN User Manual